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Problema de
Dirichlet
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Problema de valores en la frontera

Dados, t0 < t1 ∈ R, f : R3 → R, en C1([t0, t1]× R2), y
c1, c2 ∈ R, consideremos el problema de encontrar una función
u(t), de clase 2 en [t0, t1] tal que

u′′(t) = f (t, u(t), u′(t)) si t0 < t < t1,

u(t0) = c0, u(t1) = c1.

Nótese que sin pérdida de generalidad (mediante cambios de
coordenadas lineales), podemos considerar t0 = 0, t1 = 1 y
c1 = c2 = 0.

En general el problema anterior puede no tener solución o no
tener una única solución.
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Métodos de tiro

Consideremos el problema de valor inicial

u′′(t) = f (t, u(t), u′(t)) si 0 < t < 1,

u(0) = 0, u′(0) = x .

Por el Teorema de Existencia y Unicidad, el problema anterior
tiene solución única para cada valor de x ∈ R. Sea u(t, x)
dicha solución y denotemos

ϕ(x) := u(1, x).

Entonces el problema de valores frontera es equivalente a
encontrar un cero de la función ϕ.
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Métodos de tiro

Ejemplo
Aplicando el método de la secante, encontrar la solución del
problema de valores frontera

−u′′(t) + u(t) = t si 0 < t < 1,

u(0) = 0, u(1) = 0.
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Diferenciabilidad respecto de las condiciones
iniciales

Consideremos el sistema autónomo

x ′ = f (x)

y sea φ : D → Rn el flujo asociado.

Teorema (Dif. resp. de las condiciones iniciales)

Supongamos que f ∈ C1. Entonces el flujo φ es de clase 1.

La derivada parcial φx(t, x) es, para cada (t, x) ∈ D, la
solución matricial Z de (la primera ecuación variacional)

Z ′ = Df (φ(t, x))Z , Z (0) = I .
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Diferencias finitas

Para N ∈ N definimos

h =
1

N + 1
, tj = jh, j = 0, · · · ,N + 1.

lo que nos da una partición del intervalo [0, 1] en N + 1 trozos,
siendo t0 = 0 y tN+1 = 1.

En el método de las diferencias finitas, aproximaremos el
valor de u en los puntos t0, t1, . . . , tN+1.

Para ello, sustituiremos u′′ por una aproximación numérica en
términos de los valores de u y pediremos que los valores
aproximados u0, . . . , uN+1 verifiquen el sistema de ecuaciones
correspondiente.
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Diferencias finitas
Aproximación numérica de las derivadas

Proposición

Supongamos que u ∈ C3([0, 1]). Entonces, existe ξ ∈ (0, 1) tal
que

u′(t) =
u(t + h)− u(t − h)

2h
− h2

u
′′′
(ξ)

6

Proposición

Supongamos que u ∈ C4([0, 1]). Entonces, existe τ ∈ (0, 1) tal
que

u′′(x) =
u(x − h)− 2u(x) + u(x + h)

h2
− h2

u(4)(τ)

12
.
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Diferencias finitas

Aproximaremos la solución de u′′ = f (t, u, u′), u(tj),
j = 1, · · · ,N, por uj , j = 1, · · · ,N, tales que

uj−1 − 2uj + uj+1

h2
= f

(
tj , uj ,

uj+1 − uj−1

2h

)
, j = 1, · · · ,N,

u0 = uN+1 = 0.

Este problema se denomina problema aproximado o
problema discreto y al problema original, problema continuo.
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Problema de valores en la frontera
Ecuación de prueba

Dada una función f continua en el intervalo [0, 1],
consideremos el problema de valores en la frontera

−u′′(t) = f (t) si 0 < t < 1,

u(0) = u(1) = 0,

El problema anterior tiene solución única,

u(t) =

∫ 1

0
G (t, s)f (s) ds,

donde G (t, s) es la (una) función de Green

G (t, s) =

{
s(1− t) si 0 ≤ s ≤ t ≤ 1,

t(1− s) si 0 ≤ t < s ≤ 1,
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En el caso anterior, tenemos que el método de las diferencias
finitas es

−uj−1 + 2uj − uj+1

h2
= f (tj), j = 1, · · · ,N,

u0 = uN+1 = 0,
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José Luis
Bravo

Ecuaciones de
segundo
orden

Introducción

Métodos de tiro

Método de las
diferencias finitas

Ecuaciones en
derivadas
parciales

Ecuaciones
parabólicas.
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Diferencias finitas

Si U es el vector de coordenadas u1, · · · , uN , F el vector de
coordenadas f (t1), . . . , f (tN) y

A =
1

h2


2 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2


entonces el problema discreto es equivalente a encontrar un
vector U tal que

AU = F . (1)
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Lema

Si α1 ≥ 2, . . . , αn ≥ 2, entonces la matriz

B =


α1 −1
−1 α2 −1

−1
. . .

. . .
. . .

. . . −1
−1 αn


es definida positiva.

Como consecuencia, A es invertible y el método está bien
definido.
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Convergencia

Lemma

Sea U = (u1, . . . , uN) solución de AU = F . Entonces

uj = h
N∑

k=1

G (tj , tk)f (tk).

Teorema

Si la solución u(t) del problema continuo es de clase 4,
entonces existe una constante C ≥ 0, independiente de N tal
que

max
1≤j≤N

|u(tj)− uj | ≤ Ch2.
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parabólicas.
Métodos expĺıcitos
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Diferencias finitas

Vamos a utilizar una idea similar para aproximar las soluciones
de una ecuación diferencial de tipo parabólico.

Partimos de la ecuación del calor en una barra de longitud uno,
uxx(t, x) = ut(t, x), (t ≥ 0, 0 ≤ x ≤ 1)

u(0, x) = g(x), (0 ≤ x ≤ 1)

u(t, 0) = a(t), (t ≥ 0)

u(t, 1) = b(t), (t ≥ 0)

donde u(t, x) es la temperatura del punto x en el instante t,
g(x) describe la temperatura inicial de cada punto y a, b son
las temperaturas de los extremos.
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José Luis
Bravo

Ecuaciones de
segundo
orden

Introducción

Métodos de tiro

Método de las
diferencias finitas

Ecuaciones en
derivadas
parciales

Ecuaciones
parabólicas.
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Problema discreto

Comenzamos discretizando el dominio de u. Para ello, fijamos
n ∈ N, k > 0, definimos h = 1/(n + 1) y tomamos

tj = jk, j = 0, 1, . . . ,

xi = ih, i = 0, 1, . . . , n.

A continuación, elegimos aproximaciones de las derivadas en
los puntos de la malla. En este caso, tomamos

ut(t, x) ≈
u(t + k , x)− u(t, x)

k
,

uxx(t, x) ≈
u(t, x + h)− 2u(t, x) + u(t, x − h)

h2
.
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parabólicas.
Métodos expĺıcitos
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Problema discreto

Planteamos ahora una aproximación discreta del problema
original. Para ello, denotamos uj ,i a la aproximación de
u(tj , xi ). Entonces

u0,i = f (xi ), 0 ≤ i ≤ n + 1,

uj ,0 = a(tj), uj ,n = b(tj), j = 0, 1 . . . .

y en el resto de puntos, imponemos que se verifique

uj ,i+1 − 2uj ,i + uj ,i−1

h2
=

uj+1,i − uj ,i
k

, 1 ≤ i ≤ n, j ≥ 1.
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Problema discreto

Despejando uj+1,i de la última ecuación, obtenemos

uj+1,i = suj ,i+1 + (1− 2s)uj ,i + suj ,i−1, 1 ≤ i ≤ n, j ≥ 1,

donde s = k/h2.

Es decir, conocidos uj ,i , 0 ≤ i ≤ n, podemos utilizar la
ecuación anterior para obtener uj+1,i , 1 ≤ i ≤ n − 1. Por esto
se denomina método expĺıcito.

José Luis Bravo Problemas de valores en la frontera



Problemas de
valores en la

frontera
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Estabilidad

El proceso anterior puede verse como un sistema dinámico
discreto. Si las condiciones frontera son cero, partiendo de los
valores en t = 0, en cada paso multiplicamos por la matriz
tridiagonal B,

B =


1− 2s s

s 1− 2s s

s
. . .

. . .
. . .

. . . s
s 1− 2s


Como en estas condiciones, la solución de la EDP tiende a
cero, para que el método converja a la misma solución, la
sucesión Bku debe converger a cero. Es decir, el radio
espectral de B debe ser menor que 1.
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Estabilidad

Lema

Los autovalores de la matriz B son

1− 2s(1− cos θj), θj =
jπ

n + 1
, (1 ≤ j ≤ n).

(con autovectores asociados (sen(θj), sen(2θj), . . . , sen(nθj))).

Como consecuencia, para que el método sea estable es
condición suficiente que s ≤ 1/2, es decir, 2k ≤ h2.

José Luis Bravo Problemas de valores en la frontera



Problemas de
valores en la

frontera
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parabólicas.
Métodos expĺıcitos
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Ecuación del calor

Recordemos que queremos aproximar las soluciones de una
ecuación diferencial de tipo parabólico.

Partimos de la ecuación del calor en una barra de longitud uno,
uxx(t, x) = ut(t, x), (t ≥ 0, 0 ≤ x ≤ 1)

u(0, x) = g(x), (0 ≤ x ≤ 1)

u(t, 0) = a(t), (t ≥ 0)

u(t, 1) = b(t), (t ≥ 0)

donde u(t, x) es la temperatura del punto x en el instante t,
g(x) describe la temperatura inicial de cada punto y a, b son
las temperaturas de los extremos.
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Problema discreto

Consideremos ahora una aproximación discreta de la forma

uj ,i+1 − 2uj ,i + uj ,i−1

h2
=

uj ,i − uj−1,i

k
, 1 ≤ i ≤ n, j ≥ 1,

y en el resto de los puntos, los valores dados por las
condiciones en la frontera,

u0,i = f (xi ), 0 ≤ i ≤ n,

uj ,0 = a(tj), uj ,n+1 = b(tj), j = 0, 1 . . . .
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Problema discreto

Conocidos los valores de la aproximación en el nivel j − 1 de la
malla, tenemos que los valores en el nivel j vienen dados por las
soluciones al sistema lineal

−suj ,i+1 + (1 + 2s)uj ,i − suj ,i−1 = uj−1,i , 1 ≤ i ≤ n,

donde s = k/h2.
Es decir, los valores de uj ,i se obtienen resolviendo el sistema
anterior. Por esto se denomina método impĺıcito.
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José Luis
Bravo

Ecuaciones de
segundo
orden

Introducción

Métodos de tiro

Método de las
diferencias finitas

Ecuaciones en
derivadas
parciales

Ecuaciones
parabólicas.
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Problema de
Dirichlet

Estabilidad

Si las condiciones frontera son a(t) = b(t) = 0, definimos la
matriz

A =


1 + 2s −s
−s 1 + 2s −s

−s
. . .

. . .
. . .

. . . −s
−s 1 + 2s


y vj denota el vector (u1j , . . . , unj), entonces se verifica

Avj = vj−1.
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Estabilidad

Tenemos que
vj = A−1vj−1.

El sistema será estable si vj → 0, es decir,

vj = A−1vj−1 = . . . = A−jv0 → 0,

o, equivalentemente, ρ(A−1) < 1.
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Estabilidad

Lema

Los autovalores de la matriz A son

1 + 2s(1− cos θj), θj =
jπ

n + 1
, (1 ≤ j ≤ n).

Como consecuencia, los autovalores de A−1 están entre 0 y 1 y
el método impĺıcito siempre es convergente.
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parabólicas.
Métodos impĺıcitos
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Orden del método expĺıcito

Consideremos ui ,j las aproximaciones al problema de valores en
la frontera de la ecuación del calor definidas por

u0,i = f (xi ), uj ,0 = a(tj), uj ,n = b(tj),

uj ,i = suj−1,i+1 + (1− 2s)uj−1,i + suj−1,i−1,

con s = k/h2 < 1/2.

Proposición

Sea u(t, x) la solución del problema de valores en la frontera
para t ∈ [0,T ]. Se verifica que

u(tj , xi ) = uj ,i +O(h2), tj ∈ [0,T ], xi ∈ [0, 1].
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parabólicas.
Métodos expĺıcitos
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Método de Crank-Nicolson

Combinando los dos métodos anteriores, podemos definir las
aproximaciones mediante las ecuaciones

−suj ,i−1+(2+2s)uj ,i−suj ,i+1 = suj−1,i−1+(2−2s)uj−1,i+suj−1,i+1

con las mismas condiciones en los puntos frontera.

Nótese que podemos obtener los valores en el nivel j a partir de
los valores en el nivel j − 1 resolviendo un sistema lineal.

Se demuestra que el método de Crank-Nicolson es estable y el
orden del error es

u(tj , xi ) = uj ,i +O(k2, h2).
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Problema de Dirichlet

Consideremos la ecuación de Laplace en un cuadrado,
∇2u = 0

u(x , 0) = a(x), u(x , 1) = b(x),

u(0, y) = c(y), u(1, y) = d(y).

Consideremos la discretización definida por h = 1/(n + 1),

(xi , yj) = (ih, jh), 0 ≤ i , j ≤ n + 1.

Y la aproximación

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
+O(h2).
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Diferencias finitas

Con la discretización anterior, definimos las aproximaciones a la
solución del problema de Dirichlet mediante diferencias finitas,
ui ,j ≈ u(ti , tj), donde ui ,j está determinado por

4ui ,j − ui−1,j − ui ,j−1 − ui+1,j − ui ,j+1 = 0, 1 ≤ i , j ≤ n,

ui ,0 = a(xi ), ui ,n+1 = b(xi ), u0,j = c(yi ), un+1,j = d(yi ).
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