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El problema de Cauchy

Resolucién

numérica de

CIET . « ..
diferenciales Consideramos el problema de Cauchy o de valor inicial

ordinarias

Joéfal\;sis X/ = f(t7 X) }
X(to) = X0

Planteamiento
del problema

con f definidaen S = {(t,x) : a<t<b, xeR}y
(to,Xo) €S.

Llamaremos solucién del problema de valor inicial a
x € CY([a, b]) tal que x(to) = x0 ¥

X'(t) = f(t,x(1)),

para todo t € [a, b].

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinarias



Resolucién
numérica de
CIET
diferenciales
ordinarias

José Luis

Bravo

Planteamiento
del problema

Forma integral

Proposicion

Sea x € CX([a, b]) solucién del problema de valor inicial. Si

f € C(S), entonces

x(t) = xo + /t f(r,x(7)) dr.

0
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Planteamiento
del problema

Existencia y unicidad de soluciones

Teorema (Existencia y unicidad local de soluciones)

Supongamos que f es continua y localmente Lipschitz respecto
a x en (ty,x0). Sean 0, L > 0 tal que para todo
te(to—9,to+0), x1,x € (x0 — 0, x0 + ),

[f(t,x1) — f(t,x2)| < L|x1 — xa.

Entonces existe una dnica solucion del problema de valor
inicial, x(t) definida para todo |t — ty| < min(d,d/M), donde

M = max{|f(t,x)|: |t — to| <9I, |x —x0| < 0}.
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Teorema (Existencia y unicidad global de soluciones)

Sea f continua y lipschitziana respecto de la segunda variable
José Luis
Bravo en 5

Wl Entonces para cada (to,x0) € S existe una dnica solucion del
el problema ... ..
problema de valor inicial definida en [a, b].

La solucion del problema de valor inicial x' = x?, x(0) =1 no
estd definida en [—1,1].

Sin embargo, la solucién de x' = x*> — 4, x(0) = 1, estd
definida en R.
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Planteamiento
del problema

Continuidad respecto de las condiciones iniciales

Teorema (Continuidad respecto de las condiciones iniciales)

Sea f € C(S) lipschitziana respecto de la segunda variable.

Dado (to, x0) € S, denotemos x(t; to, xo) a la solucion
(maximal) que pasa por dicho punto y sea [to, T) su intervalo
de definicién a la derecha de tg.

Entonces para todo ty < t; < T y € > 0, existe d(e, t1) tal que
x(t; 7,v) estd definida en [ty, t1] y

|x(t; to, x0) — x(t;7,9)| <€,  paratodo t € [tg, t1],
siempre que

|7' = t0| < 5(6, tl), |X0 = 'LM < 5(6, tl).
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Resoluciéon numérica del problema de Cauchy

El objetivo serd obtener un método que
m Fijados puntos t; € [a,b], 0 < i < N (con tg = a)

m Devuelva aproximaciones x; del valor x(t;), 0 < i < N,
donde x(t) es la solucién del PVI.

Decimos que un método es de paso fijo si los valores t; son de
la forma
b—a

tt=a+ih, h= N i=0,1,..., N, (NeN).

Decimos que un método es de un paso si el cdlculo de cada x;
se basa tnicamente en la informacién que proporciona x;_1.

Decimos que un método es multipaso si cada x; se calcula a
partir de varios puntos anteriores.
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Métodos de un paso

Consideremos un problema de valor inicial, x’ = f(t,x),
x(a) =n.

Tomamos to, t1,...,t, € [a,b] como ty = a, t; = ty + ih,
1<i<n, conh=(b-—a)/n.

La forma general de los métodos de un paso es

Xo = 1],
Xiv1 = X; + hoe(ti, xi; h),

donde ¢ es una funcién definida en [a, b] x R x R, que
depende del método considerado.
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Herenciale El método de Euler consiste en tomar ¢¢(t, x; h) = f(t, x), es
José Luis decirv

Bravo

X0 =1, Xi+1=xi+ hf(ti,x).

Métodos de
un paso

Aplicar el método de Euler con un paso y con tres pasos para
aproximar el valor de la solucién en x =1 del PVI

x'=x, x(0)=1.
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Métodos implicitos

Otra manera de definir los métodos es en forma implicita, en
la cual para obtener xj;1 es necesario resolver una ecuacién.
Por ejemplo, el método de Euler implicito es

X0 =1, Xip1=X + hf(tii1,Xip1)
El método del trapecio, es
f(ti,x;) 4 f(tiy1, Xip1)
5 .

En lugar de despejar xj11 en la funcién f, se puede aproximar
utilizando otro método (explicito). Por ejemplo, usando el
método del trapecio con el método de Euler, obtenemos el
Método de Heun,

X0 =1, Xit+1=Xi+h

f(ti,xi) + f(tig1, xi + hf(t;, xi
X0 =1, Xi+1=Xi+h( xi) + (+;X+ ( X))-
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Error global y error de truncamiento
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Consideremos un método de un paso explicito.

Se define el error global en el punto y; como
e = X(t,') — X.

i e s Se define el error local de truncamiento en el punto xj11
métodos de un paso
como

Tit1(h) = X(t’H)h_X(tl) — ¢¢(ti, x(t;); h).
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Resolucion Sea M un conjunto de funciones f a las que se les puede
numérica de . . P

ecuaciones aplicar un determinado método ¢.

diferenciales
ordinarias

e Denominamos orden del método en M al menor p € N tal
ey que para cada f € M existe Cr > 0y hr > 0 tales que

T(h) < CehP, (h < hy),
donde 7(h) = max; |1;(h)|.

Proposicion

Seaf € M. Si¢ y ¢ son dos métodos de orden p < g,
respectivamente, y existen Co, Hy > 0 tal que 74(h) > CohP,
para h < Hp, entonces existe Hr > 0 tal que

73(h) < 14(h),  para todo 0 < h < Hy.
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Error global y error de truncamiento
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ordinarias Teorema

José Luis Supongamos que ¢ esta definida en el conjunto

Bravo

H={(t,x;h): a<t<b, xeR, 0<h< ho},

y que es lipschitziana respecto de la segunda variable con
constante de Lipschitz L > 0. Entonces

) (elti=2) _ 1) siL >0
leil = |x(t;) — x| <
T(h)(ti — a) siL=0.
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Error global y error de truncamiento

Corolario

Si ¢f estd definida en H, es lipschitziana respecto de la segunda
variable con constante de Lipschitz L > 0 y el método definido
por ¢f es de orden p, entonces el error global es de orden p.

Concretamente, si existen C > 0 y hg > 0 tales que
7(h) < ChP para h < hg, entonces
E(elb=a) _1)hP siLl >0

max |e;| <
0 C(b— a)h® siL=0.
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Anlisis de los
métodos de un paso

Cero-estabilidad

Sea {y;} la sucesién obtenida a partir de una perturbacién del
método de un paso

yo=mn+do
Yiv1 = Yi + h(oe(ti, yis h) + di41)

para dg,61,... € R.

h h S .
Denotaremos xl-( ), yi( ) 3 las aproximaciones obtenidas por el

método y por una perturbacién del método, respectivamente,
para mostrar su dependencia respecto de h'y como Nj, el
nimero de pasos del método.
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Cero-estabilidad

Resolucién
numérica de
CIET

diferenciales Diremos que el método es cero-estable (o estable en el sentido
José Luie de Liapunov) si existen hy > 0, C > 0 tal que para todo

Blavo h € (0, hg] y todo € > 0 suficientemente pequefio, si
do, - ..,0n, < €, entonces

h h .
\y,-( )—x,-( )| < Ce, 0<i< Ny
Andlisis de los
métodos de un paso

Teorema

Si ¢ es continua en H y es lipschitziana respecto de la
segunda variable, entonces el método es cero-estable.
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Estimacidn del error de truncamiento

Resolucién
numérica de

ecuaciones Supongamos que tenemos un método de orden p definido por

diferenciales

ordinarias ¢f|
José Luis Xit1 = X + hor(ti, xi; h),

Bravo

Para estimar el error que cometemos al pasar de la
aproximacion en t; a la aproximacién en t; ;1. Supongamos que
en t; no cometemos error, es decir, x(t;) = x;. Sea ¢} otro
ek método de orden g > p, que aplicamos en (t;, x;) y denotemos
x;, 1 la aproximacion obtenida. Entonces

x(tip1) — Xi41 = x(tig1) — X1 + X5 — Xis1
Xiy1 — Xit1 + hrig(h).
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Anlisis de los
métodos de un paso

Convergencia

Sea ¢¢ un método de un paso y t € [a, b]. Denotaremos, para
cada ne€ N,

t—a t(,,)

i

=atim, X" =n,
x,.(")1 = x,.(") + h,,gzbf(t,-(n),xl.("); hp).

Diremos que el método definido por ¢ es convergente en el
punto f € [a, b] si para todo 1 € R se verifica

: (M _ (¢
nﬂrroox,, = x(t).

Diremos que el método es convergente si lo es para todo
t € a, b
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Proposicion

Si ¢f es continua y lipschitziana respecto de x en H y el
método ¢r es de orden al menos uno, entonces el método es

Andlisis de los

pHe  convergente.

José Luis Bravo

Resolucién numérica de ecuaciones diferenciales ordinari.



Consistencia

Resolucién
numérica de
CIET
diferenciales
ordinarias

José Luis
Bravo

Se dice que el método ¢r es consistente si
of(t,x;0) = f(t,x),

LGS para todo t € [a, b], x € R. Se dice que el método ¢ es
consistente en M, si para toda f € M, ¢r es consistente.
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Convergencia y consistencia
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Bravo Teorema

Sean f, ¢¢ funciones continuas y lipschitzianas respecto de la
segunda variable en S y H, respectivamente. Entonces son
equivalentes

Andlisis de los

Tt ¢f es consistente.

¢r es convergente.
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El conjunto de funciones con derivadas acotadas

Resolucién
numérica de
CIET

diferenciales Consideremos para k > 1 el conjunto

ordinarias
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Bravo

Fila,b] =< f: S — R | f es continua y acotada y tiene
derivadas parciales hasta el orden
k continuas y acotadas en S

Toda funcién f € Fy[a, b] es continua en [a,b] x Ry
lipschitziana respecto de la segunda variable.

Ademas, la solucién x(t) del problema de valor inicial es una
funcién de clase k + 1 en [a, b].
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Método de Taylor
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prwmeek®l  Sea f € Fi[a, b] e x(t) la solucién del problema de valor inicial

ordinarias

José Luis X/ — f(t, X)

Bravo

Definimos las derivadas totales de f sobre las soluciones del
PVI como

Meétodos de orden

FO(t, x) = f(t,x),
FO(t,x) = £ (8, %) + 508, %) (8, %), k>0,

donde los subindices denotan las derivadas parciales.
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Método de Taylor

Resolucién Con la notacién anterior, podemos obtener x(t;+1) mediante el
numérica de

sl desarrollo en serie de Taylor de x(t) en t;,
diferenciales
ordinarias

José Luis X(ti+1) — X(t,') + fo)(t,', X(t,'))h e

Bravo

FAD (8, x(t7) K
k!
Xk+1(t,' -+ G,h) hk+1
(k+1)! !

o, lo que es lo mismo,

k+1 t; 0,‘/1
x(tiv1) = x(t;) + hTE (&, x(t;); b) + Xt 4 0ih) i

(k+1)! ’
en donde
1) k—1)
TRt h) = £ (¢, x) + %) (;,’X)h b AR k(lt’x) Bt
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Método de Taylor
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achiEes El método de Taylor de orden k consiste en aproximar la
José Luis sucesion {x(t;)} mediante la sucesién {x;}, definida por

Bravo

Xo=T"n

k
Xi+1 = Xj + hTf)(t,',X,'; h).

Meétodos de orden
superior

Proposicion

Sea f € Fyla, b], k > 1. Entonces el método de Taylor de
orden k es un método convergente, consistente y de orden k.
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tiy1 tiv1
José Luis X(t,‘+1) —X(t,') - / X/(t) dt: / f(t7x(t)) dt?
t; tj

Consideremos la ecuacién diferencial escrita en forma integral

Bravo

Considerando el cambio de variable g(6) = t; + 6h tenemos

tiv1 g(1)
/ F(t,x(t)) dt = /(0) F(t,x(t)) dt
t, g

1
- h/ F(t + 0h, x(t + 0h)) db.
0

i

Los métodos de Runge-Kutta consisten es estimar esta integral
mediante una férmula de cuadratura.
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Planteamiento
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ordinarias

Joct Luie Consideremos ahora una particién del intervalo [0,1] de la
Bravo forma

0=0<61<---<0n<l1

y utilicemos una férmula de cuadratura del tipo

1 m
/ F(O)do ~ S . F(6,)
0 s
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Planteamiento

Resolucién

numérica de

ecuaciones H . _

sl SiT, =t; +0,h n=0,1,..., m tenemos
ordinarias

1 m
/ F(t5 -+ 0h,x(t + 0R)) dO ~ S (7 x(7),
0
n=0

luego una aproximacién de x(t;;+1) viene dada por

m
Meétodos de orden
x(tr1) = x(6) + b Y auf (7 x(7,)).
n=0
Pero para definir un método explicito, necesitamos que la
aproximacién dependa dnicamente de x(t;).
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Para aproximar x(7,,), partimos de
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O
x(1,) — x(ti) = h/o f(ti + 60h,x(ti + 6h)) do

y aplicando la férmula de cuadratura

O, p—l
/ F(0) dO ~ ) onucF(6k),
0

k=0

Meétodos de orden
superior

tenemos

pn—1

X(TM) ~ X(ti) + hz apkf(Tkvx(Tk))'
k=0
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Métodos de Runge—Kutta explicitos

Resolucion Dados los parametros

numérica de

et 0=0 <0< <0,<1
ordinarias

oy, p=0,1....,m

José Luis

Bravo a,u,kv le---7m7k:0717""/“b_1

Se define el método (explicito) de Runge—Kutta de m + 1
etapas como

m
X0=n Xiy1=X+hY auf(ru,m),
pn=0
endonde 7, =t; +6,h, p=0,1..., m
pn—1

0= Xi, MNu :X,'—|—hZOéMkf(Tk,77k), pw=12..., m
k=0
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Férmulas de cuadratura

Resolucion Recordemos que una férmula de cuadratura se dice que es de
numérica de . . .
e orden al menos p si proporciona la integral exacta para todo

diferenciales

e polinomio de grado menor o igual a p.

José Luis

o En el caso de la férmula de cuadratura definida por los «,,
w=0,1,..., m, tenemos que es de orden al menos p si se
cumple

1 ! Zm
m = / 0k do = Ozﬂﬁz, para todo 0 S k S pP.
Métodos de orden 0

superior

u=0

En particular, serd de orden al menos cero si
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Férmulas de cuadratura
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numérica de

CRIEEIES En el caso de la férmula de cuadratura definida para cada

diferenciales

ordinarias p=1,...,mporlos a,i, k=0,...,1—1, tenemos que es de
José Luis orden al menos p si se cumple

Bravo

9j+1 Ou w1 .
£ = ¢ do = a,t, paratodo0<j<p.
j+1 e
0 k=0
Mitodos de rden En particular, sera de orden al menos cero si

pn—1

Zaukzeu, uw=1 ..., m

k=0
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Meétodos de orden
superior

Ejemplos

Para m = 0 obtenemos el método de Euler.

Para m = 1 los pardmetros han de verificar
ag+a; =1, bp=0<0; <1, aio = 0.
Algunos casos: ag = a1 % 01 =a10=1:

Xi+1 = Xi + ( tHXI =+ f(t,+1,X, + hf(t,,X,))) (1)

1.
ag=0, a; =1, 61 =a10=3:

h
Xit1 —X,+hf(t,+§,xi+ 2f(t,-,x,-)) (2)
apg=7% a1=3, br1=a10=3
h 3h 2h 2h
Xjit1 = X; + 4f(t,,X,)+Zf(t,’—i-?,X,‘—i-?f(ti,Xi)) (3)
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Meétodos de orden
superior

Ejemplos

Oy =

g =

=1 =3 63=
1:%, 042:%7 a3 =
a10=73, a20=0, azo=0
az1=3%, a31=0
Q32 = 1.

El método clasico de Runge-Kutta es m = 3, con

o= =

Ks=f(ti+ 3, x + 2K,), Ks = f(t; + h,x; + hK3), tenemos

Xi+1 = Xj

L
6

(K1 + 2K + 2K3 + Ks).

José Luis Bravo

(4)
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Tablas de Butcher

Resolucién
numérica de
CIET

diferenciales Normalmente un método de Runge-Kutta de m + 1 pasos se
escribe de modo resumido como una tabla (de Butcher):

José Luis
Bravo

00 a0,0 050’]_ e O[O7m

01 | up @11 ... oam
Mctoriostetie gm Olm,o am,l N am’m
superior a0 o — an

En el caso de los métodos explicitos, las entradas en la diagonal
o por encima han de ser cero, es decir, ajj = 0 si j > i.
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Tablas de Butcher

Resolucién m Método de Euler y Euler implicito:
numérica de
CIET

dife;.enci.ales 0 ‘ 0 1 ‘ 1
José Luis ‘ 1 ’ ‘ 1
Bravo
m Método de Heun:
0
111
1/2 12
m RK4:
0
1/21/2
121 0 1/2

110 o0 1
|1/6 1/3 1/3 1/6
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Runge-Kutta-Fehlberg

Resolucion El método de Runge-Kutta-Fehberg proporciona dos métodos
numérica de

p— de Runge-Kutta con férmulas de cuadratura evaluadas en los
diferenciales - .
mismos puntos, el primero de orden 5 y el segundo de orden 4.

ordinarias

José Luis
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0
1] 1
4| 12
3| 3 9
8| 32 32
: 121932 —7200 7296
RIS 13 | 2197 2197 2197
11439 _g 3680 845
216 513 4104
1| =8 ) —3544 1859 —11
2 | 27 2565 4104 40

16 6656 28561 —9 2
135 12825 56430 50 55

25 0 1408 2197 -1
2565 4104
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Orden de los Métodos de Runge-Kutta

Resolucién
numérica de
CIET
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Ut Sea f € F;|a, b]. Consideremos m=1y ag+ a3 =1,
to=0<61 <1, aro="0;.

Proposicion

Si la férmula de cuadratura definida por ag, o1 es de grado al
menos 1 (a161 = 1/2), entonces el método de Runge-Kutta
definido por esos parametros es de orden dos.

Meétodos de orden
superior

En general, para tener un método de Runge-Kutta de orden s
hacen falta al menos s etapas. Para orden s = 1,2, 3,4 bastan
s etapas, para orden s = 5,6 bastan s+ 1 etapasy paras > 7
hacen falta al menos s + 2 etapas.
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Convergencia y consistencia

Resolucién
numérica de
CIET

diferenciales Un método de un paso definido por una funcién ¢¢ que sea
ordinarias

continua y lipschitziana respecto de la segunda variable es
convergente si y solo si es consistente.

José Luis
Bravo

En los métodos de Runge—Kutta tenemos

of(t, x; h) Zau (Tus M)

Meétodos de orden
superior

es consistente (si la férmula de cuadratura es de grado cero).

Es facil comprobar que ¢¢(t, x; h) es continua.

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinarias



Resolucién
numérica de
CIET
diferenciales
ordinarias
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Convergencia y consistencia

Proposicion

Si f es lipschitziana respecto de la segunda variable entonces la

funcion ¢¢ que define los métodos de Runge—Kutta también es
lipschitziana respecto de la segunda variable, es decir, existe

K >0y hy > 0 tales que

|¢¢(t,x; h) — o¢(t, X h)| < K|x — X,

para todo t € [a, b], x,x € R, h € [0, hg].

José Luis Bravo

Resolucién numérica de ecuaciones diferenciales ordinarias




Problema test

Resolucién
numérica de
CIET
diferenciales

ordinarias Denominaremos problema test al problema de valor inicial lineal

José Luis
Bravo

con A € C. Nétese que la solucién x(t) = et de este problema
verifica

Estabilidad absoluta

lim |x(t)] =0, siysélosi Re(A)<O0.

t—o0

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinari.
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numérica de
CIET
diferenciales
ordinarias

José Luis
Bravo

Estabilidad absoluta

Estabilidad absoluta

Consideremos un método numérico de un paso explicito
aplicado al problema test, definido por ¢, con paso h y sea
{xn} la sucesién de aproximaciones generada por

to=0, th=nh, xo=1, Xpt1 = Xn+ hd(tn,xn, h).
Diremos que el método es absolutamente estable para h'y A si
lim x, = 0.
n—o0
Denominamos region de estabilidad absoluta a

A={hX e C: x, — 0 cuando n — oo}.

Diremos que el método es A-estable si A contiene los
complejos con parte real negativa.
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Métodos multipaso

Resolucién
numérica de ~
ecuaciones Dados xp, ..., xx_1, los métodos de k pasos generan una
diferenciales ., . 1%

J—— sucesion {x,} (tal que x, es una aproximacién de x(t,))

158 (e mediante la ecuacidn en diferencias

Bravo

F(tm tnt1s - o5 Btk Xns Xn415 -+« 5 Xntoks h) =0.

Los métodos multipaso lineales de k pasos son aquellos en los
que la ecuacién en diferencias es de la forma

k k
Métod . . = . .
vnslt?p::o Z aJXn+J h Z IBJ fn+~]
j=0 j=0

donde fnyj = f(tntj, Xntj), Para ciertos ag, ..., ax, Bo, .- -, Bk.
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Orden y tipo de los métodos multipaso

Resolucién

numérica de . , . . -

ecuaciones Consideremos un método multipaso lineal definido por los
diferenciales

. R coeficientes {«;, Bi}i=o,. k-

m Diremos que el método es de k pasos si ax # 0 (podemos
asumir ay = 1) y ag + /33 #0.
m Diremos que el método es explicito si 5, = 0 e implicito
si ﬁk:# 0.
Si el método es explicito,

Métodos

I k—1 k—1
multipaso

Xnpk ==Y apXnij T h Y Bifas).
j=0 j=0
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numérica de
CIET
diferenciales
ordinarias

Métodos
multipaso

Métodos implicitos

Si el método es implicito, entonces

k-1 k-1
Xk = — Z ajXpyj+h Z Bjfn+j + hBkfark
=0 =0

= ¢+ hBkfayk-

es decir, x4, es un punto fijo de F(x) = ¢ + hBf(thik, x). Si
f es Lipschitz respecto de la segunda variable con constante L,
entonces

|F(y2) — F(y1)l < hBkLly2 — y1l.

Es decir, para h suficientemente pequefo, es contractiva.
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Ejemplos

Resolucién
numérica de
CIET
diferenciales
ordinarias

Suponiendo conocidos xg e x1, definimos x,, n > 2 como
José is
Bravo

Xnt2 = Xp + 2hf(tn+1u Xn+1)-

Es un método de dos pasos explicito con constantes

g = —1, ﬁo — 0.
a1 = 0, [31 = 2,
B2 = 0.

Métodos ay — 1 ,
multipaso
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Ejemplos

Resolucién
numérica de
CIET
diferenciales

ordinarias Definimos el método implicito de dos pasos

José Luis
Bravo

h
Xp4+2 = Xp + 3 [f(tn,x,,) + 4f(t,,+1,x,,+1) + f(tn+27Xn+2)] )

en el que las constantes son

ap = —1, Bo =

Métodos
multipaso

W= WIS W=
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Métodos de Adams

Resolucién

numérica de , . .

ecuaciones Los métodos de Adams se basan en aproximar la integral de
diferenciales

ordinarias la igua Idad

José Luis

Bravo t,,+ k

x(tmik) — X(tnpkt) = / F(t,x(1)) dt

thik—1
mediante la integral de un cierto polinomio de interpolacién.

Sea P(t) el polinomio interpolador de f(t,x(t)) en tn, tht1,
.+, thtk—1. Entonces

tn+k

Métodos de Adams X(tn+k) — X(tn-i—k—l) ~ / P(t) dt

thik—1
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Métodos de Adams-Bashforth

Resolucién
numérica de

e El polinomio P(t) se puede expresar en funcién de los

diferenciales

e polinomios de interpolacién de Lagrange como

José Luis

Bravo k—1
P(t) = ) ftnrj, x(tas))) (1),

en donde /i(t), j=0,1, ..., k—1 son los polinomios de grado
< k — 1 que verifican /j(t,4;) = 6;;. Es decir,

k—1
t— thrs
li(t) = _
! ;l:l(:) tn—l—j — thts

s#i
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Métodos de Adams-Bashforth

Resolucién Tenemos entonces

numérica de
CIET

diferenciales ik k—1
ordinarias n
ot L X(tntk) = x(tnk—1) Z f(tntj, x(tns))i(t) dt
Bravo ; tn+k 1 _]
k-1 thtk
=Y Ftrox(tne) [ (o)t
j=0 thik—1

Por otra parte, considerando el cambio de variable
g(t) = t, + sh, se tiene

tn+k
/ li(t)dt = h /
tn+k 1 k

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinarias



Métodos de Adams-Bashforth

Resolucién
numérica de Por tanto
CIET
diferenciales
ordinarias k-1

José Luis X(tnsk) = X(tnsk—1) & h > Bif (tnijs x(tnsf)),

Bravo

j=0
k k-1
t_
B = / [[—d, Jj=01... k-1
klsoj—s
s#j

Definimos el método de Adams-Bashforth de k pasos, como

k—1

Xn+k — Xn+k—1 = hZ/ijn+ja
Jj=0

Meétodos de Adams
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Métodos de Adams-Moulton

Resolucién

Sweesll  Sea ahora P(t) el polinomio interpolador de f(t,x(t)) en los

CIET

diferenciales puntos t,, tn+1, P t,H_k.

ordinarias

José Luis Razonando andlogamente, definimos el método de

Bravo

donde

Meétodos de Adams

i= [ 10

Adams-Moulton de k pasos,

k

Xntk — Xnpk—1 = hZﬁjfn+j,
Jj=0

k

t_

"4, j=0,1,..., k
J—Ss

=0

=
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numérica de
CIET
diferenciales
ordinarias

José Luis
Bravo

Meétodos de Adams

Ejercicios

Deducir los siguientes métodos de Adams-Bashforth:

k=1, Xp+1 — Xn = hf,
h
k=2, Xn42 — Xp41 = 5(3fn+l - fn)

h
k= 3, Xn+3 — Xp+2 = 5(23fn+2 — 16fn+]_ + 5fn)

Deducir los siguientes métodos de Adams-Moulton:

k= 0, Xn+1 — Xn = hfn+1
h
k=1, Xn+2 — Xn+1 = E(fn+2 + fn+1)

h
Xp+3 — Xp42 = E(an+3 + 8fn-‘,—2 - fn+1)
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Definiciones

Resolucién
numérica de
CIET
diferenciales
ordinarias

Dado el método multipaso lineal
k k

ZannJrj = hZ/ijn+j7 (ak =1, |a0| + ‘Igol > 0)
j=0 j=0

se define el error de truncamiento en el punto (t, h) como

T(t, h) Zajx(t + jh) — hZBJ t + jh,x(t + jh))
j=0

Orden, convergencia
y consistencia
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numérica de
CIET
diferenciales
ordinarias

José Luis
Bravo

Error de truncamiento

Proposicion

Supongamos que la solucion x(t) verifica x(tn) = X,
X(tn+1) = Xp41, -+ X(t,,+k,1) = Xpt+k—1. Entonces, si el
método es explicito,

(tn h) = 7 (x(tnk) = Xoik).

Si el método es implicito y f tiene derivada continua respecto
de x, tenemos

X(tn—i-k) B

7(tn, h) = P

otk - kax(thrka 5) (X(tn+k) - Xn+k)7

COH§:0Xn+k+(].—0) (n+k) 0<6<1.
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Error de truncamiento

Resolucién 3

numérica de Sean, para I = ].7 ey p,
ecuaciones

diferenciales

ordinarias k

k k
" 1 y 1 i1
Moo G=) 0 G==> aj - = > B
Jj=0 " j=0

“ 20

Diremos que un método multipaso lineal es de orden p — 1 si

G=C==C1=0, C,#0.

Proposicion

Un método multipaso lineal es de orden p si y solo si para toda
et f c F,[a, b, todo t € [a, b) y todo 1) € R, se verifica que el
error de truncamiento es un infinitésimo de orden p.
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Error de truncamiento

Resolucién
numérica de
CIET
diferenciales
ordinarias

José Luis Corolario

Bravo

Supongamos que
la solucion x(t) verifica x(tn) = Xp, X(tn+1) = Xnt+1, - - -
X(tn+k—1) = Xn+k-1
H si el método es implicito, f, estd acotada en S.

Se verifica que, si el método es de orden p, entonces el error
global es de orden p + 1.

Orden, convergencia
y consistencia
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Orden, convergencia
y consistencia

Polinomios de Hermite

Proposicion

Sean

to, t1, ..., tk_1 € R, t,'#tjsii#j,
X0, X1, - -+ Xk—1 € R,
X0y X5 - -y X1 € R.

Entonces existe un tnico polinomio P(t), de grado < 2k — 1,
tal que

P(t,'):X,', i=0,1,...,k—1
Pl(t)=xl, i=0,1,....k—1.
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Polinomios de Hermite

Resolucién
numérica de
i Y
ecuaciones P roposicion
diferenciales

ordinarias

Sean

José Luis

Bravo
to, t1,...,tx € R, t;;étjsii;éj,
X0, X1, - - -, Xk € R,

/ / /
X0y X1, -y X1 € R.

Entonces existe un tnico polinomio P(t), de grado < 2k, tal
que

Pl = STl

P(t)=x, i=01,....,k—1,
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numérica de
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Orden, convergencia
y consistencia

Polinomios de Hermite

Proposicion

Sean

to, t1,...,tk € R, con tj < tit1,
X0, X1, - -y Xk—1 € R,

/ / /
X, X155 X, € R.

Entonces existe un tnico polinomio P(t), de grado < 2k, tal
que

P(t,'):X,', i=0,1,....,k—1
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numérica de
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José Luis
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Polinomios de Hermite

Corolario

Dados xp, X1, ..., xk—1 € R, x3,X{,...,x,_; € R, existe un
tnico polinomio P(t) de grado < 2k — 1 tal que

P(J):XJ7 P/(J):XJ/7 _]:0,1,,/(—].
Ademads,
k—1 k—1
P(t) = ijLjo(t) F Z)(J{le(t),
j=0 j=0
en donde Ljo y Lj1, son polinomios de grado < 2k — 1 tales que

Lio(i) = 6, LJ/.O(/‘) =0

. ) i, j=0,1,..., k—1.
Lin(i) =0, Lj(i) = dj
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Polinomios de Hermite

Resolucién Corolario

numérica de
CIET

Louaciones Dados xo, x1, ..., xk—1 € R, Xgs X1, - -, X} € R, existe un dnico
ordinarias polinomio P(t) de grado < 2k tal que

José Luis
Bravo

P(j)=xj, j=0,1,....k—1, P'(j)=x], j=0,1,... k.
Ademds,
B k—1 _ k _
£) =Y xLio(t) + D> _ xL(t)
Jj=0 j=0
en donde Ljp, j=0,1,...,k—1,y Ly, j=0,1,..., k, son
polinomios de grado < 2k tales que

)_5,J, ():0, i=0,1,....k, j=0,1,....k—1
j=0,1,...,k
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Orden de los métodos multipaso

El método multipaso Zfzo WSy = hzjlfzo Bifotj, ak =1, es

de orden al menos p (exactamente p) si y solo si se verifica la
igualdad

k k
> aiH(G) = > BH'G) =0,
j=0 j=0

para todo polinomio H(t) de grado < p (y existe un polinomio
de grado p + 1 para el que no se verifica esa igualdad).
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Orden de los métodos multipaso

Resolucién
numérica de
CIET

diferenciales P rOpOSiCién

ordinarias

st L i) Todo método lineal multipaso explicito de k pasos es de
Bravo orden <2k — 1.

i) Todo método lineal multipaso implicito de k pasos es de
orden < 2k.

Proposicion

i) Existe un tnico método lineal multipaso explicito de k
pasos y orden 2k — 1.

i) Existe un dnico método lineal multipaso implicito de k

pasos y orden 2k.
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Orden, convergencia
y consistencia

Definiciones

Se dice que un método multipaso lineal es consistente si es
por lo menos de primer orden, es decir, si Co = C; = 0.

N iy . .
Sea {x,(, ) 0o la sucesion definida como solucién de

k k

(V) _ (N) [ (N)
Zaj n+J hNZ/BJf tn—i-J’ n+J)
Jj=0 j=0

en donde
t—
hy=""2 ™ — a4 nny, n=0,1,
N
siendo los datos iniciales x( ) xl(N), x,(ﬁ)l tales que

lim xM =y, j=01... k-1

N—oo
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Definiciones

Resolucién
numérica de
CIET

diferenciales Se dice que un método multipaso lineal es convergente, si
Jose Luie para toda f continua y I|psch_|t2|ana respecto_de la segunda
B variable, todo n € Ry todo t € [a, b] se verifica

. N -
m = x(0)

en donde x(t) es la solucién del problema de valor inicial
x' = f(t,x)
x(a) =1

Orden, convergencia
y consistencia
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Equivalencia

Resolucién
numérica de
CIET
diferenciales
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José Luis
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Proposicion

Todo método lineal multipaso convergente es consistente.

Orden, convergencia
y consistencia
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Condicién de la raiz

Resolucién

numérica de Dado el método ZI'(ZO QjXpyj = th-(:O ﬂjfnJrj, (ak = 1), se

CIET ]

diferenciales define el pOI inomio

ordinarias

José Luis

Bravo p(t) = tk"‘Oékf]_tk_l + +a1t+a0

Se dice que el método verifica la condicién de la raiz (o
condicién de estabilidad) si para toda raiz A de p(t) se verifica

i) A <1,

i) [A\| <1, si A esuna raiz miltiple.

Proposicion
pagmesd  Todo método lineal multipaso convergente verifica la condicion
de la raiz.
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Condicién de la raiz

Resolucién
numérica de
CIET
diferenciales
ordinarias

Teorema

José Luis
Bravo

Un método lineal multipaso es convergente si y solo si es
consistente y verifica la condicién de la raiz.

.

Teorema (Primera barrera de Dalqvist)

Si un método lineal de k pasos, con k > 2, es convergente,
entonces es de orden < k + 2, si k es par; < k+1, si k es
impar.

Orden, convergencia
y consistencia
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Convergencia

Resolucién
numérica de
CIET
diferenciales
ordinarias

José Luis
Bravo

Estudiar la convergencia del método explicito de 3 pasos y
orden maximo.

Orden, convergencia
y consistencia
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Orden y convergencia de los métodos de Adams

Resolucién
numérica de
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diferenciales
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José Luis
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Proposicion

Se verifica:

i) Los métodos de Adams—Bashforth de k pasos son de
orden k.

i) Los métodos de Adams—Moulton de k pasos son de orden
k+1.

iii) Los métodos de Adams son convergentes.
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Predictor-corrector

Métodos predictor-corrector

Sean los métodos (explicito e implicito) definidos por

k k—1
D xnrj =hYy Bif(taij,xns)), ok =1
j=0 j=0

K K
Y &xarj = hY Bif(tarjxne), =1
j=1 Jj=1
Un método predictor—corrector consiste en obtener una
aproximacién X, de x(t,1x) usando el método explicito
(predictor) y obtener el valor final de x4 usando el implicito
(corrector), mediante

k-1 k-1
Xnik = — Y Gixnyj+h Y Bif (tnsjs Xnsj) + hBkF (tnric: Snti).
=1 =1
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Predictor-corrector

Calculemos el método predictor—corrector usando
Adams—Bashforth de 3 pasos como predictor y Adams—Moulton
de 2 pasos como corrector.

Supongamos que tenemos las aproximaciones x,, Xp11, Xpt2-
Calculamos la aproximacién x,+3 como

. h
Xn+3 = Xn+2+ﬁ(23f(tn+2aXn+2)*16f(tn+1,Xn+1)+5f(tnaXn));

Utilizando dicha aproximacién, calculamos x,43 como

h .
Xnt3 = Xnt2t s (57 (tn13, Xnt3)+8f (tar2, Xns2)—F(tns1, Xnt1))-

El paso siguiente es calcular x4 a partir de xp41, Xpt2, Xn+3-
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Orden y convergencia de los métodos predictor
corrector de Adams

Resolucién
numérica de
CIET
diferenciales

ordinarias Como el método de Adams—Bashforth de k pasos es de orden
José Luis k, el error de truncamiento se puede escribir como

Bravo

hr(tn, h) = Crpr KU (2,) + O(HH2).

Andlogamente, el error de truncamiento de Adams-Moulton de
k pasos es de la forma

hr(tn, h) = Cioh* 2xH2) (1)) + O(h*+3),

donde hemos denotado con asterisco para distinguirlas.
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Orden y convergencia de los métodos predictor
corrector de Adams

Resolucién
numérica de
CIET
diferenciales

e Si calculamos dichas constantes (ejercicio), obtenemos

José Luis
Bravo

k Cima C/f+1 k Crt1 Clt+1

1 1/2 -1/2 3 3/8 -1/24

2 5/12 -1/12 4 251/720 -19/720
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Orden y convergencia de los métodos predictor
corrector de Adams

Resolucién
numérica de
CIET
diferenciales
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B Proposicion

ST El método predictor-corrector con el Método de
Adams-Bashforth de k pasos como predictor y el Método de
Adams-Moulton de k — 1 pasos como corrector es un método
de orden k. Es mas, se puede estimar el error cometido en el

paso n como

*
k+1
Gy — Cppg

X(tn+k) — Xn+k = (Xn+k - )?n—&—k) .
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José Luis
Bravo

Predictor-corrector

Métodos adaptativos

En el ejemplo que vimos, usando Adams—Bashforth de 3 pasos
como predictor y Adams—Moulton de 2 pasos como corrector,
si f € C°[a, b], se puede estimar el error cometido como

Xn+3 — Xn43 + O(hS).

€n+3 = X(tn+3) — Xn+3 = 10

Métodos adaptativos.
En los métodos adaptativos, se utiliza el error anterior: si el

error estimado es mayor que el margen establecido, entonces se
disminuye el valor del paso h, mientras que si el error estimado
es menor, se aumenta el valor del paso.

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinarias



Estabilidad relativa

Resolucién
numérica de

ecuaciones Consideremos el método

diferenciales
k k
Y " apxnrj =hY_ Bifayj,
j=0 j=0

ordinarias
que supondremos convergente. Definimos los polinomios

p(t) = th + a1 tF T+ gt + g

o(t) = Brt* + Br1t" T+ + Bt + Bo

Estabilidad absoluta
y relativa

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinarias



Resolucién
numérica de
CIET
diferenciales
ordinarias

José Luis
Bravo

Estabilidad absoluta
y relativa

Estabilidad en los métodos multipaso

Sean 7, ..., las raices de H(t) (que supondremos simples).
Podemos considerar 11, ..., I, funciones de h tales que

Fl(O) =n,..., Fk(O) = I,

donde ry, ..., rk son las raices de p(t).

Si el método es convergente, tenemos que Cyp = 0, o lo que es
lo mismo, r; =1 es raiz de p(t). Ademds, por verificarse la
condicidn de la raiz, esta raiz es simple.

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinarias



Estabilidad absoluta

Resolucién
numérica de
CIET
diferenciales

ordinarias Decimos que un método lineal multipaso convergente es
José Luis absolutamente estable para un cierto h si

Bravo

|| <1, paraj=1,..., k.

Se llama region de estabilidad absoluta al conjunto de los h,
tal que el método es absolutamente estable.

La regién de estabilidad absoluta nos determina los valores de
h = Ah de modo que la solucién aproximada x, converge a 0
cuando n — oo.

Estabilidad absoluta
y relativa
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Estabilidad absoluta

Resolucién
numérica de
CIET
diferenciales
ordinarias

José Luis

Bravo Decimos que el método es A-estable si su regién de estabilidad
absoluta incluye los complejos con parte real < 0.

Teorema (Segunda barrera de Dalqvist)

No existen métodos multipaso explicitos A-estables. Los
métodos multipaso implicitos A-estables tienen orden < 2.

Estabilidad absoluta
y relativa
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Estabilidad relativa

Resolucién
numérica de

merca o Decimos que un método lineal multipaso convergente es
Sifcranchies relativamente estable para un cierto h si

ordinarias

José Luis

Bravo |F1| > |,_:I|7 paraj: 2, ey k

Se llama regi6n de estabilidad relativa al conjunto de los h,
tal que el método es relativamente estable.

En el caso real, denominamos intervalo de estabilidad
relativa al mayor intervalo («, 3) con @ < 0 < b tal que el
método es relativamente estable para todo h € («, /).

La regién de estabilidad relativa nos determina los valores de
h = Ah de modo que los errores en las condiciones iniciales
el utilizadas al aplicar el método convergen a 0 cuando n — oo.

y relativa

José Luis Bravo Resolucién numérica de ecuaciones diferenciales ordinarias
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