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El problema de Cauchy

Consideramos el problema de Cauchy o de valor inicial

x ′ = f (t, x)
x(t0) = x0

}
con f definida en S = {(t, x) : a ≤ t ≤ b, x ∈ R} y
(t0, x0) ∈ S .

Llamaremos solución del problema de valor inicial a
x ∈ C1([a, b]) tal que x(t0) = x0 y

x ′(t) = f (t, x(t)), para todo t ∈ [a, b].
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Forma integral

Proposición

Sea x ∈ C1([a, b]) solución del problema de valor inicial. Si
f ∈ C(S), entonces

x(t) = x0 +

∫ t

t0

f (τ, x(τ)) dτ.
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Existencia y unicidad de soluciones

Teorema (Existencia y unicidad local de soluciones)

Supongamos que f es continua y localmente Lipschitz respecto
a x en (t0, x0). Sean δ, L > 0 tal que para todo
t ∈ (t0 − δ, t0 + δ), x1, x2 ∈ (x0 − δ, x0 + δ),

|f (t, x1)− f (t, x2)| < L|x1 − x2|.

Entonces existe una única solución del problema de valor
inicial, x(t) definida para todo |t − t0| < min(δ, δ/M), donde

M = max{|f (t, x)| : |t − t0| < δ, |x − x0| < δ}.
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numérica de
ecuaciones
diferenciales
ordinarias
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Existencia y unicidad de soluciones

Teorema (Existencia y unicidad global de soluciones)

Sea f continua y lipschitziana respecto de la segunda variable
en S.

Entonces para cada (t0, x0) ∈ S existe una única solución del
problema de valor inicial definida en [a, b].

Ejemplo

La solución del problema de valor inicial x ′ = x2, x(0) = 1 no
está definida en [−1, 1].

Sin embargo, la solución de x ′ = x2 − 4, x(0) = 1, está
definida en R.
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Continuidad respecto de las condiciones iniciales

Teorema (Continuidad respecto de las condiciones iniciales)

Sea f ∈ C(S) lipschitziana respecto de la segunda variable.

Dado (t0, x0) ∈ S, denotemos x(t; t0, x0) a la solución
(maximal) que pasa por dicho punto y sea [t0,T ) su intervalo
de definición a la derecha de t0.

Entonces para todo t0 < t1 < T y ϵ > 0, existe δ(ϵ, t1) tal que
x(t; τ, ψ) está definida en [t0, t1] y

|x(t; t0, x0)− x(t; τ, ψ)| < ϵ, para todo t ∈ [t0, t1],

siempre que

|τ − t0| < δ(ϵ, t1), |x0 − ψ| < δ(ϵ, t1).
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José Luis
Bravo

Planteamiento
del problema

Métodos de
un paso

Análisis de los
métodos de un paso

Métodos de orden
superior

Estabilidad absoluta

Métodos
multipaso

Métodos de Adams

Orden, convergencia
y consistencia

Predictor-corrector

Estabilidad absoluta
y relativa

Resolución numérica del problema de Cauchy

El objetivo será obtener un método que

Fijados puntos ti ∈ [a, b], 0 ≤ i ≤ N (con t0 = a)

Devuelva aproximaciones xi del valor x(ti ), 0 ≤ i ≤ N,
donde x(t) es la solución del PVI.

Decimos que un método es de paso fijo si los valores ti son de
la forma

ti = a+ ih, h =
b − a

N
, i = 0, 1, . . . , N, (N ∈ N).

Decimos que un método es de un paso si el cálculo de cada xi
se basa únicamente en la información que proporciona xi−1.

Decimos que un método es multipaso si cada xi se calcula a
partir de varios puntos anteriores.
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Métodos de un paso

Consideremos un problema de valor inicial, x ′ = f (t, x),
x(a) = η.

Tomamos t0, t1, . . . , tn ∈ [a, b] como t0 = a, ti = t0 + ih,
1 ≤ i ≤ n, con h = (b − a)/n.

La forma general de los métodos de un paso es

x0 = η,
xi+1 = xi + hϕf (ti , xi ; h),

donde ϕf es una función definida en [a, b]× R× R+, que
depende del método considerado.
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Método de Euler

El método de Euler consiste en tomar ϕf (t, x ; h) = f (t, x), es
decir,

x0 = η, xi+1 = xi + hf (ti , xi ).

Ejemplo

Aplicar el método de Euler con un paso y con tres pasos para
aproximar el valor de la solución en x = 1 del PVI

x ′ = x , x(0) = 1.
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Métodos impĺıcitos

Otra manera de definir los métodos es en forma impĺıcita, en
la cual para obtener xi+1 es necesario resolver una ecuación.
Por ejemplo, el método de Euler impĺıcito es

x0 = η, xi+1 = xi + hf (ti+1, xi+1).

El método del trapecio, es

x0 = η, xi+1 = xi + h
f (ti , xi ) + f (ti+1, xi+1)

2
.

En lugar de despejar xi+1 en la función f , se puede aproximar
utilizando otro método (expĺıcito). Por ejemplo, usando el
método del trapecio con el método de Euler, obtenemos el
Método de Heun,

x0 = η, xi+1 = xi + h
f (ti , xi ) + f (ti+1, xi + hf (ti , xi ))

2
.
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Error global y error de truncamiento

Consideremos un método de un paso expĺıcito.

Se define el error global en el punto yi como

ei = x(ti )− xi .

Se define el error local de truncamiento en el punto xi+1

como

τi+1(h) =
x(ti+1)− x(ti )

h
− ϕf (ti , x(ti ); h).
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Orden

Sea M un conjunto de funciones f a las que se les puede
aplicar un determinado método ϕ.

Denominamos orden del método en M al menor p ∈ N tal
que para cada f ∈ M existe Cf ≥ 0 y hf > 0 tales que

τ(h) ≤ Cf h
p, (h ≤ hf ),

donde τ(h) = maxi |τi (h)|.

Proposición

Sea f ∈ M. Si ϕ y ϕ̄ son dos métodos de orden p < q,
respectivamente, y existen C0,H0 > 0 tal que τϕ(h) > C0h

p,
para h ≤ H0, entonces existe Hf > 0 tal que

τϕ̄(h) < τϕ(h), para todo 0 < h ≤ Hf .
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numérica de
ecuaciones
diferenciales
ordinarias
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Error global y error de truncamiento

Teorema

Supongamos que ϕf está definida en el conjunto

H = {(t, x ; h) : a ≤ t ≤ b, x ∈ R, 0 ≤ h ≤ h0},

y que es lipschitziana respecto de la segunda variable con
constante de Lipschitz L ≥ 0. Entonces

|ei | = |x(ti )− xi | ≤


τ(h)
L (eL(ti−a) − 1) si L > 0

τ(h)(ti − a) si L = 0.
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Error global y error de truncamiento

Corolario

Si ϕf está definida en H, es lipschitziana respecto de la segunda
variable con constante de Lipschitz L ≥ 0 y el método definido
por ϕf es de orden p, entonces el error global es de orden p.

Concretamente, si existen C ≥ 0 y h0 > 0 tales que
τ(h) ≤ Chp para h ≤ h0, entonces

max
i

|ei | ≤


C
L

(
eL(b−a) − 1

)
hp si L > 0

C (b − a)hp si L = 0.
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Cero-estabilidad

Sea {yi} la sucesión obtenida a partir de una perturbación del
método de un paso

y0 = η + δ0

yi+1 = yi + h (ϕf (ti , yi ; h) + δi+1) ,

para δ0, δ1, . . . ∈ R.

Denotaremos x
(h)
i , y

(h)
i a las aproximaciones obtenidas por el

método y por una perturbación del método, respectivamente,
para mostrar su dependencia respecto de h y como Nh el
número de pasos del método.
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Cero-estabilidad

Diremos que el método es cero-estable (o estable en el sentido
de Liapunov) si existen h0 > 0, C > 0 tal que para todo
h ∈ (0, h0] y todo ϵ > 0 suficientemente pequeño, si
δ0, . . . , δNh

< ϵ, entonces

|y (h)i − x
(h)
i | < Cϵ, 0 ≤ i ≤ Nh.

Teorema

Si ϕf es continua en H y es lipschitziana respecto de la
segunda variable, entonces el método es cero-estable.
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Estimación del error de truncamiento

Supongamos que tenemos un método de orden p definido por
ϕf ,

xi+1 = xi + hϕf (ti , xi ; h),

Para estimar el error que cometemos al pasar de la
aproximación en ti a la aproximación en ti+1. Supongamos que
en ti no cometemos error, es decir, x(ti ) = xi . Sea ϕ

∗
j otro

método de orden q > p, que aplicamos en (ti , xi ) y denotemos
x∗i+1 la aproximación obtenida. Entonces

x(ti+1)− xi+1 = x(ti+1)− x∗i+1 + x∗i+1 − xi+1

= x∗i+1 − xi+1 + hτ∗i+1(h).
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Convergencia

Sea ϕf un método de un paso y t̂ ∈ [a, b]. Denotaremos, para
cada n ∈ N,

hn =
t̂ − a

n
, t

(n)
i = a+ ihn, x

(n)
0 = η,

x
(n)
i+1 = x

(n)
i + hnϕf (t

(n)
i , x

(n)
i ; hn).

Diremos que el método definido por ϕf es convergente en el
punto t̂ ∈ [a, b] si para todo η ∈ R se verifica

lim
n→+∞

x
(n)
n = x(t̂).

Diremos que el método es convergente si lo es para todo
t̂ ∈ [a, b].

José Luis Bravo Resolución numérica de ecuaciones diferenciales ordinarias



Resolución
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Convergencia

Proposición

Si ϕf es continua y lipschitziana respecto de x en H y el
método ϕf es de orden al menos uno, entonces el método es
convergente.
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Consistencia

Se dice que el método ϕf es consistente si

ϕf (t, x ; 0) = f (t, x),

para todo t ∈ [a, b], x ∈ R. Se dice que el método ϕ es
consistente en M, si para toda f ∈ M, ϕf es consistente.
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Convergencia y consistencia

Teorema

Sean f , ϕf funciones continuas y lipschitzianas respecto de la
segunda variable en S y H, respectivamente. Entonces son
equivalentes

1 ϕf es consistente.

2 ϕf es convergente.
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El conjunto de funciones con derivadas acotadas

Consideremos para k ≥ 1 el conjunto

Fk [a, b] =

f : S → R | f es continua y acotada y tiene
derivadas parciales hasta el orden
k continuas y acotadas en S

 .

Toda función f ∈ Fk [a, b] es continua en [a, b]× R y
lipschitziana respecto de la segunda variable.

Además, la solución x(t) del problema de valor inicial es una
función de clase k + 1 en [a, b].
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Método de Taylor

Sea f ∈ Fk [a, b] e x(t) la solución del problema de valor inicial

x ′ = f (t, x)

x(a) = η

}
.

Definimos las derivadas totales de f sobre las soluciones del
PVI como

f 0)(t, x) = f (t, x),

f k)(t, x) = f
k−1)
t (t, x) + f

k−1)
x (t, x)f (t, x), k > 0,

donde los sub́ındices denotan las derivadas parciales.
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Método de Taylor

Con la notación anterior, podemos obtener x(ti+1) mediante el
desarrollo en serie de Taylor de x(t) en ti ,

x(ti+1) = x(ti ) + f 0)(ti , x(ti ))h + · · ·+ f k−1)(ti , x(ti ))

k!
hk

+
xk+1(ti + θih)

(k + 1)!
hk+1,

o, lo que es lo mismo,

x(ti+1) = x(ti ) + hT
k)
f (ti , x(ti ); h) +

xk+1(ti + θih)

(k + 1)!
hk+1,

en donde

T
k)
f (t, x ; h) = f 0)(t, x) +

f 1)(t, x)

2!
h + · · ·+ f k−1)(t, x)

k!
hk−1.
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Método de Taylor

El método de Taylor de orden k consiste en aproximar la
sucesión {x(ti )} mediante la sucesión {xi}, definida por

x0 = η

xi+1 = xi + hT
k)
f (ti , xi ; h).

Proposición

Sea f ∈ Fk [a, b], k > 1. Entonces el método de Taylor de
orden k es un método convergente, consistente y de orden k.
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Planteamiento

Consideremos la ecuación diferencial escrita en forma integral

x(ti+1)− x(ti ) =

∫ ti+1

ti

x ′(t) dt =

∫ ti+1

ti

f (t, x(t)) dt,

Considerando el cambio de variable g(θ) = ti + θh tenemos∫ ti+1

ti

f (t, x(t)) dt =

∫ g(1)

g(0)
f (t, x(t)) dt

= h

∫ 1

0
f (ti + θh, x(ti + θh)) dθ.

Los métodos de Runge-Kutta consisten es estimar esta integral
mediante una fórmula de cuadratura.
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Planteamiento

Consideremos ahora una partición del intervalo [0, 1] de la
forma

0 = θ0 ≤ θ1 ≤ · · · ≤ θm ≤ 1

y utilicemos una fórmula de cuadratura del tipo∫ 1

0
F (θ) dθ ≈

m∑
µ=0

αµF (θµ)
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Si τµ = ti + θµh, µ = 0, 1, . . . , m, tenemos∫ 1

0
f (ti + θh, x(ti + θh)) dθ ≈

m∑
µ=0

αµf (τµ, x(τµ)),

luego una aproximación de x(ti+1) viene dada por

x(ti+1) ≈ x(ti ) + h
m∑

µ=0

αµf (τµ, x(τµ)).

Pero para definir un método expĺıcito, necesitamos que la
aproximación dependa únicamente de x(ti ).
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Planteamiento

Para aproximar x(τµ), partimos de

x(τµ)− x(ti ) = h

∫ θµ

0
f (ti + θh, x(ti + θh)) dθ

y aplicando la fórmula de cuadratura∫ θµ

0
F (θ) dθ ≈

µ−1∑
k=0

αµkF (θk),

tenemos

x(τµ) ≈ x(ti ) + h

µ−1∑
k=0

αµk f (τk , x(τk)).
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Métodos de Runge–Kutta expĺıcitos

Dados los parámetros

0 = θ0 ≤ θ1 ≤ · · · ≤ θm ≤ 1

αµ, µ = 0, 1 . . . , m

αµk , µ = 1 . . . , m, k = 0, 1, . . . , µ− 1

Se define el método (expĺıcito) de Runge–Kutta de m + 1
etapas como

x0 = η xi+1 = xi + h
m∑

µ=0

αµf (τµ, ηµ),

en donde τµ = ti + θµh, µ = 0, 1 . . . , m

η0 = xi , ηµ = xi + h

µ−1∑
k=0

αµk f (τk , ηk), µ = 1, 2, . . . , m.
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Fórmulas de cuadratura

Recordemos que una fórmula de cuadratura se dice que es de
orden al menos p si proporciona la integral exacta para todo
polinomio de grado menor o igual a p.

En el caso de la fórmula de cuadratura definida por los αµ,
µ = 0, 1, . . . ,m, tenemos que es de orden al menos p si se
cumple

1

k + 1
=

∫ 1

0
θk dθ =

m∑
µ=0

αµθ
k
µ, para todo 0 ≤ k ≤ p.

En particular, será de orden al menos cero si

m∑
µ=0

αµ = 1.
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Fórmulas de cuadratura

En el caso de la fórmula de cuadratura definida para cada
µ = 1, . . . ,m por los αµ,k , k = 0, . . . , µ− 1, tenemos que es de
orden al menos p si se cumple

θj+1
µ

j + 1
=

∫ θµ

0
θj dθ =

µ−1∑
k=0

αµkθ
j
k , para todo 0 ≤ j ≤ p.

En particular, será de orden al menos cero si

µ−1∑
k=0

αµk = θµ, µ = 1, . . . , m.
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Ejemplos

Para m = 0 obtenemos el método de Euler.

Para m = 1 los parámetros han de verificar

α0 + α1 = 1, θ0 = 0 ≤ θ1 ≤ 1, α1 0 = θ1.

Algunos casos: α0 = α1 =
1
2 , θ1 = α1 0 = 1:

xi+1 = xi +
h

2

(
f (ti , xi ) + f

(
ti+1, xi + hf (ti , xi )

))
(1)

α0 = 0, α1 = 1, θ1 = α1 0 =
1
2 :

xi+1 = xi + hf
(
ti +

h

2
, xi +

h

2
f (ti , xi )

)
(2)

α0 =
1
4 , α1 =

3
4 , θ1 = α1 0 =

2
3 :

xi+1 = xi +
h

4
f (ti , xi ) +

3h

4
f
(
ti +

2h

3
, xi +

2h

3
f (ti , xi )

)
(3)
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El método clásico de Runge-Kutta es m = 3, con

θ0 = 0, θ1 =
1
2 , θ2 =

1
2 , θ3 = 1

α0 =
1
6 , α1 =

1
3 , α2 =

1
3 , α3 =

1
6

α1 0 =
1
2 , α2 0 = 0, α3 0 = 0

α2 1 =
1
2 , α3 1 = 0

α3 2 = 1.

Es decir, si K1 = f (ti , xi ), K2 = f
(
ti +

h
2 , xi +

h
2K1

)
K3 = f

(
ti +

h
2 , xi +

h
2K2

)
, K4 = f (ti + h, xi + hK3), tenemos

xi+1 = xi +
h

6
(K1 + 2K2 + 2K3 + K4). (4)
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Tablas de Butcher

Normalmente un método de Runge-Kutta de m + 1 pasos se
escribe de modo resumido como una tabla (de Butcher):

θ0 α0,0 α0,1 . . . α0,m

θ1 α1,0 α1,1 . . . α1,m
...

...
...

. . .
...

θm αm,0 αm,1 . . . αm,m

α0 α1 . . . αm

En el caso de los métodos expĺıcitos, las entradas en la diagonal
o por encima han de ser cero, es decir, αi ,j = 0 si j ≥ i .
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Tablas de Butcher

Método de Euler y Euler impĺıcito:

0 0

1
,

1 1

1

Método de Heun:

0
1 1

1/2 1/2

RK4:
0

1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
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Runge-Kutta-Fehlberg

El método de Runge-Kutta-Fehberg proporciona dos métodos
de Runge-Kutta con fórmulas de cuadratura evaluadas en los
mismos puntos, el primero de orden 5 y el segundo de orden 4.

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1 439
216 −8 3680

513
−845
4104

1
2

−8
27 2 −3544

2565
1859
4104

−11
40

16
135 0 6656

12825
28561
56430

−9
50

2
55

25
216 0 1408

2565
2197
4104

−1
5 0
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Orden de los Métodos de Runge-Kutta

Proposición

Sea f ∈ F2[a, b]. Consideremos m = 1 y α0 + α1 = 1,
θ0 = 0 ≤ θ1 ≤ 1, α1 0 = θ1.

Si la fórmula de cuadratura definida por α0, α1 es de grado al
menos 1 (α1θ1 = 1/2), entonces el método de Runge-Kutta
definido por esos parámetros es de orden dos.

En general, para tener un método de Runge-Kutta de orden s
hacen falta al menos s etapas. Para orden s = 1, 2, 3, 4 bastan
s etapas, para orden s = 5, 6 bastan s + 1 etapas y para s ≥ 7
hacen falta al menos s + 2 etapas.
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Convergencia y consistencia

Un método de un paso definido por una función ϕf que sea
continua y lipschitziana respecto de la segunda variable es
convergente si y solo si es consistente.

En los métodos de Runge–Kutta tenemos

ϕf (t, x ; h) =
m∑

µ=0

αµf (τµ, ηµ),

es consistente (si la fórmula de cuadratura es de grado cero).

Es fácil comprobar que ϕf (t, x ; h) es continua.
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Convergencia y consistencia

Proposición

Si f es lipschitziana respecto de la segunda variable entonces la
función ϕf que define los métodos de Runge–Kutta también es
lipschitziana respecto de la segunda variable, es decir, existe
K ≥ 0 y h0 > 0 tales que

|ϕf (t, x ; h)− ϕf (t, x̄ ; h)| ≤ K |x − x̄ |,

para todo t ∈ [a, b], x , x̄ ∈ R, h ∈ [0, h0].
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Problema test

Denominaremos problema test al problema de valor inicial lineal{
x ′ = λx , t > 0,

x(0) = 1,

con λ ∈ C. Nótese que la solución x(t) = eλt de este problema
verifica

lim
t→∞

|x(t)| = 0, si y sólo si Re(λ) < 0.
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Estabilidad absoluta

Consideremos un método numérico de un paso expĺıcito
aplicado al problema test, definido por ϕ, con paso h y sea
{xn} la sucesión de aproximaciones generada por

t0 = 0, tn = nh, x0 = 1, xn+1 = xn + hϕ(tn, xn, h).

Diremos que el método es absolutamente estable para h y λ si

lim
n→∞

xn = 0.

Denominamos región de estabilidad absoluta a

A = {hλ ∈ C : xn → 0 cuando n → ∞}.

Diremos que el método es A-estable si A contiene los
complejos con parte real negativa.
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Métodos multipaso

Dados x0, . . . , xk−1, los métodos de k pasos generan una
sucesión {xn} (tal que xn es una aproximación de x(tn))
mediante la ecuación en diferencias

F (tn, tn+1, . . . , tn+k , xn, xn+1, . . . , xn+k , h) = 0.

Los métodos multipaso lineales de k pasos son aquellos en los
que la ecuación en diferencias es de la forma

k∑
j=0

αjxn+j = h
k∑

j=0

βj fn+j

donde fn+j = f (tn+j , xn+j), para ciertos α0, . . . , αk , β0, . . . , βk .
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Orden y tipo de los métodos multipaso

Consideremos un método multipaso lineal definido por los
coeficientes {αi , βi}i=0,...,k .

Diremos que el método es de k pasos si αk ̸= 0 (podemos
asumir αk = 1) y α2

0 + β20 ̸= 0.

Diremos que el método es expĺıcito si βk = 0 e impĺıcito
si βk ̸= 0.

Si el método es expĺıcito,

xn+k = −
k−1∑
j=0

αjxn+j + h
k−1∑
j=0

βj fn+j .
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Métodos ı́mplicitos

Si el método es impĺıcito, entonces

xn+k = −
k−1∑
j=0

αjxn+j + h
k−1∑
j=0

βj fn+j + hβk fn+k

= c + hβk fn+k .

es decir, xn+k es un punto fijo de F (x) = c + hβk f (tn+k , x). Si
f es Lipschitz respecto de la segunda variable con constante L,
entonces

|F (y2)− F (y1)| ≤ hβkL|y2 − y1|.

Es decir, para h suficientemente pequeño, es contractiva.
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Ejemplos

Suponiendo conocidos x0 e x1, definimos xn, n ≥ 2 como

xn+2 = xn + 2hf (tn+1, xn+1).

Es un método de dos pasos expĺıcito con constantes

α0 = −1, β0 = 0,

α1 = 0, β1 = 2,

α2 = 1, β2 = 0.
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Ejemplos

Definimos el método impĺıcito de dos pasos

xn+2 = xn +
h

3
[f (tn, xn) + 4f (tn+1, xn+1) + f (tn+2, xn+2)] ,

en el que las constantes son

α0 = −1, β0 =
1
3 ,

α1 = 0, β1 =
4
3 ,

α2 = 1, β2 =
1
3 .
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Métodos de Adams

Los métodos de Adams se basan en aproximar la integral de
la igualdad

x(tn+k)− x(tn+k−1) =

∫ tn+k

tn+k−1

f (t, x(t)) dt

mediante la integral de un cierto polinomio de interpolación.

Sea P(t) el polinomio interpolador de f (t, x(t)) en tn, tn+1,
. . ., tn+k−1. Entonces

x(tn+k)− x(tn+k−1) ≈
∫ tn+k

tn+k−1

P(t) dt
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El polinomio P(t) se puede expresar en función de los
polinomios de interpolación de Lagrange como

P(t) =
k−1∑
j=0

f (tn+j , x(tn+j))lj(t),

en donde lj(t), j = 0, 1, . . . , k − 1 son los polinomios de grado
≤ k − 1 que verifican lj(tn+i ) = δij . Es decir,

lj(t) =
k−1∏
s=0
s ̸=j

t − tn+s

tn+j − tn+s
.
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Tenemos entonces

x(tn+k)− x(tn+k−1) ≈
∫ tn+k

tn+k−1

k−1∑
j=0

f (tn+j , x(tn+j))lj(t) dt

=
k−1∑
j=0

f (tn+j , x(tn+j))

∫ tn+k

tn+k−1

lj(t) dt.

Por otra parte, considerando el cambio de variable
g(t) = tn + sh, se tiene∫ tn+k

tn+k−1

lj(t) dt = h

∫ k

k−1

k−1∏
τ=0
τ ̸=j

s − τ

j − τ
ds.
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Por tanto

x(tn+k)− x(tn+k−1) ≈ h
k−1∑
j=0

βj f (tn+j , x(tn+j)),

βj =

∫ k

k−1

k−1∏
s=0
s ̸=j

t − s

j − s
dt, j = 0, 1, . . . , k − 1.

Definimos el método de Adams-Bashforth de k pasos, como

xn+k − xn+k−1 = h
k−1∑
j=0

βj fn+j ,
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Sea ahora P̄(t) el polinomio interpolador de f (t, x(t)) en los
puntos tn, tn+1, . . ., tn+k .

Razonando análogamente, definimos el método de
Adams-Moulton de k pasos,

xn+k − xn+k−1 = h
k∑

j=0

β̄j fn+j ,

donde

β̄j =

∫ k

k−1

k∏
s=0
s ̸=j

t − s

j − s
dt, j = 0, 1, . . . , k .
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Ejercicios

1 Deducir los siguientes métodos de Adams-Bashforth:

k = 1, xn+1 − xn = hfn

k = 2, xn+2 − xn+1 =
h

2
(3fn+1 − fn)

k = 3, xn+3 − xn+2 =
h

12
(23fn+2 − 16fn+1 + 5fn)

2 Deducir los siguientes métodos de Adams-Moulton:

k = 0, xn+1 − xn = hfn+1

k = 1, xn+2 − xn+1 =
h

2
(fn+2 + fn+1)

k = 2, xn+3 − xn+2 =
h

12
(5fn+3 + 8fn+2 − fn+1)

José Luis Bravo Resolución numérica de ecuaciones diferenciales ordinarias



Resolución
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Definiciones

Dado el método multipaso lineal

k∑
j=0

αjxn+j = h
k∑

j=0

βj fn+j , (αk = 1, |α0|+ |β0| > 0)

se define el error de truncamiento en el punto (t, h) como

τ(t, h) =
1

h

 k∑
j=0

αjx(t + jh)− h
k∑

j=0

βj f
(
t + jh, x(t + jh)

) .
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Proposición

Supongamos que la solución x(t) verifica x(tn) = xn,
x(tn+1) = xn+1, . . ., x(tn+k−1) = xn+k−1. Entonces, si el
método es expĺıcito,

τ(tn, h) =
1

h
(x(tn+k)− xn+k) .

Si el método es impĺıcito y f tiene derivada continua respecto
de x, tenemos

τ(tn, h) =
x(tn+k)− xn+k

h
− βk fx(tn+k , ξ)

(
x(tn+k)− xn+k

)
,

con ξ = θxn+k + (1− θ)x(tn+k), 0 < θ < 1.
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Error de truncamiento

Sean, para i = 1, . . . , p,

C0 =
k∑

j=0

αj , Ci =
1

i !

k∑
j=0

αj j
i − 1

(i − 1)!

k∑
j=0

βj j
i−1.

Diremos que un método multipaso lineal es de orden p − 1 si

C0 = C1 = · · · = Cp−1 = 0, Cp ̸= 0.

Proposición

Un método multipaso lineal es de orden p si y solo si para toda
f ∈ Fp[a, b], todo t ∈ [a, b) y todo η ∈ R, se verifica que el
error de truncamiento es un infinitésimo de orden p.
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Corolario

Supongamos que

1 la solución x(t) verifica x(tn) = xn, x(tn+1) = xn+1, . . .,
x(tn+k−1) = xn+k−1

2 si el método es impĺıcito, fx está acotada en S.

Se verifica que, si el método es de orden p, entonces el error
global es de orden p + 1.
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Polinomios de Hermite

Proposición

Sean

t0, t1, . . . , tk−1 ∈ R, ti ̸= tj si i ̸= j ,

x0, x1, . . . , xk−1 ∈ R,
x ′0, x

′
1, . . . , x

′
k−1 ∈ R.

Entonces existe un único polinomio P(t), de grado ≤ 2k − 1,
tal que

P(ti ) = xi , i = 0, 1, . . . , k − 1

P ′(ti ) = x ′i , i = 0, 1, . . . , k − 1.
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Proposición

Sean

t0, t1, . . . , tk ∈ R, ti ̸= tj si i ̸= j ,

x0, x1, . . . , xk ∈ R,
x ′0, x

′
1, . . . , x

′
k−1 ∈ R.

Entonces existe un único polinomio P(t), de grado ≤ 2k, tal
que

P(ti ) = xi , i = 0, 1, . . . , k

P ′(ti ) = x ′i , i = 0, 1, . . . , k − 1.
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numérica de
ecuaciones
diferenciales
ordinarias
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Proposición

Sean

t0, t1, . . . , tk ∈ R, con ti < ti+1,

x0, x1, . . . , xk−1 ∈ R,
x ′0, x

′
1, . . . , x

′
k ∈ R.

Entonces existe un único polinomio P(t), de grado ≤ 2k, tal
que

P(ti ) = xi , i = 0, 1, . . . , k − 1

P ′(ti ) = x ′i , i = 0, 1, . . . , k .
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Corolario

Dados x0, x1, . . . , xk−1 ∈ R, x ′0, x ′1, . . . , x ′k−1 ∈ R, existe un
único polinomio P(t) de grado ≤ 2k − 1 tal que

P(j) = xj , P ′(j) = x ′j , j = 0, 1, . . . , k − 1.

Además,

P(t) =
k−1∑
j=0

xjLj0(t) +
k−1∑
j=0

x ′jLj1(t),

en donde Lj0 y Lj1, son polinomios de grado ≤ 2k − 1 tales que

Lj0(i) = δij , L′j0(i) = 0

Lj1(i) = 0, L′j1(i) = δij
i , j = 0, 1, . . . , k − 1.
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Corolario

Dados x0, x1, . . . , xk−1 ∈ R, x ′0, x ′1, . . . , x ′k ∈ R, existe un único
polinomio P̄(t) de grado ≤ 2k tal que

P̄(j) = xj , j = 0, 1, . . . , k − 1, P̄ ′(j) = x ′j , j = 0, 1, . . . , k.

Además,

P̄(t) =
k−1∑
j=0

xj L̄j0(t) +
k∑

j=0

x ′j L̄j1(t),

en donde L̄j0, j = 0, 1, . . . , k − 1, y L̄j1, j = 0, 1, . . . , k, son
polinomios de grado ≤ 2k tales que

L̄j0(i) = δij , L̄
′
j0(i) = 0, i = 0, 1, . . . , k , j = 0, 1, . . . , k − 1

L̄j1(i) = 0, L̄′j1(i) = δij , i = 0, 1, . . . , k , j = 0, 1, . . . , k .

José Luis Bravo Resolución numérica de ecuaciones diferenciales ordinarias



Resolución
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Orden de los métodos multipaso

Lema

El método multipaso
∑k

j=0 αjxn+j = h
∑k

j=0 βj fn+j , αk = 1, es
de orden al menos p (exactamente p) si y solo si se verifica la
igualdad

k∑
j=0

αjH(j)−
k∑

j=0

βjH
′(j) = 0,

para todo polinomio H(t) de grado ≤ p (y existe un polinomio
de grado p + 1 para el que no se verifica esa igualdad).
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Proposición

i) Todo método lineal multipaso expĺıcito de k pasos es de
orden ≤ 2k − 1.

ii) Todo método lineal multipaso impĺıcito de k pasos es de
orden ≤ 2k.

Proposición

i) Existe un único método lineal multipaso expĺıcito de k
pasos y orden 2k − 1.

ii) Existe un único método lineal multipaso impĺıcito de k
pasos y orden 2k.
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Definiciones

Se dice que un método multipaso lineal es consistente si es
por lo menos de primer orden, es decir, si C0 = C1 = 0.

Sea {x (N)
n }∞n=0 la sucesión definida como solución de

k∑
j=0

αjx
(N)
n+j = hN

k∑
j=0

βj f (t
(N)
n+j , x

(N)
n+j ),

en donde

hN =
t̄ − a

N
, t

(N)
n = a+ nhN , n = 0, 1, . . . ,

siendo los datos iniciales x
(N)
0 , x

(N)
1 , . . ., x

(N)
k−1, tales que

lim
N→∞

x
(N)
j = η, j = 0, 1, . . . , k − 1.
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Definiciones

Se dice que un método multipaso lineal es convergente, si
para toda f continua y lipschitziana respecto de la segunda
variable, todo η ∈ R y todo t̄ ∈ [a, b] se verifica

lim
N→∞

x
(N)
N = x(t̄),

en donde x(t) es la solución del problema de valor inicial

x ′ = f (t, x)

x(a) = η

}
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Equivalencia

Proposición

Todo método lineal multipaso convergente es consistente.
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Condición de la ráız

Dado el método
∑k

j=0 αjxn+j = h
∑k

j=0 βj fn+j , (αk = 1), se
define el polinomio

ρ(t) = tk + αk−1t
k−1 + · · ·+ α1t + α0.

Se dice que el método verifica la condición de la ráız (o
condición de estabilidad) si para toda ráız λ de ρ(t) se verifica

i) |λ| ≤ 1,

ii) |λ| < 1, si λ es una ráız múltiple.

Proposición

Todo método lineal multipaso convergente verifica la condición
de la ráız.
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Condición de la ráız

Teorema

Un método lineal multipaso es convergente si y solo si es
consistente y verifica la condición de la ráız.

Teorema (Primera barrera de Dalqvist)

Si un método lineal de k pasos, con k ≥ 2, es convergente,
entonces es de orden ≤ k + 2, si k es par; ≤ k + 1, si k es
impar.
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Convergencia

Ejercicio

Estudiar la convergencia del método expĺıcito de 3 pasos y
orden máximo.
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Orden y convergencia de los métodos de Adams

Proposición

Se verifica:

i) Los métodos de Adams–Bashforth de k pasos son de
orden k.

ii) Los métodos de Adams–Moulton de k pasos son de orden
k + 1.

iii) Los métodos de Adams son convergentes.
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Métodos predictor-corrector

Sean los métodos (expĺıcito e impĺıcito) definidos por

k∑
j=0

αjxn+j = h
k−1∑
j=0

βj f (tn+j , xn+j), αk = 1

k∑
j=1

α̃jxn+j = h
k∑

j=1

β̃j f (tn+j , xn+j), α̃k = 1.

Un método predictor–corrector consiste en obtener una
aproximación x̃n+k de x(tn+k) usando el método expĺıcito
(predictor) y obtener el valor final de xn+k usando el impĺıcito
(corrector), mediante

xn+k = −
k−1∑
j=1

α̃jxn+j +h
k−1∑
j=1

β̃j f (tn+j , xn+j)+hβ̃k f (tn+k , x̃n+k).
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Ejemplo

Calculemos el método predictor–corrector usando
Adams–Bashforth de 3 pasos como predictor y Adams–Moulton
de 2 pasos como corrector.

Supongamos que tenemos las aproximaciones xn, xn+1, xn+2.
Calculamos la aproximación xn+3 como

x̃n+3 = xn+2+
h

12

(
23f (tn+2, xn+2)−16f (tn+1, xn+1)+5f (tn, xn)

)
;

Utilizando dicha aproximación, calculamos xn+3 como

xn+3 = xn+2+
h

12

(
5f (tn+3, x̃n+3)+8f (tn+2, xn+2)−f (tn+1, xn+1)

)
.

El paso siguiente es calcular xn+4 a partir de xn+1, xn+2, xn+3.
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Como el método de Adams–Bashforth de k pasos es de orden
k , el error de truncamiento se puede escribir como

hτ(tn, h) = Ck+1h
k+1x (k+1)(tn) +O(hk+2).

Análogamente, el error de truncamiento de Adams-Moulton de
k pasos es de la forma

hτ(tn, h) = C ∗
k+2h

k+2x (k+2)(tn) +O(hk+3),

donde hemos denotado con asterisco para distinguirlas.
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Si calculamos dichas constantes (ejercicio), obtenemos

k Ck+1 C ∗
k+1 k Ck+1 C ∗

k+1

1 1/2 -1/2 3 3/8 -1/24

2 5/12 -1/12 4 251/720 -19/720
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Proposición

El método predictor-corrector con el Método de
Adams-Bashforth de k pasos como predictor y el Método de
Adams-Moulton de k − 1 pasos como corrector es un método
de orden k. Es más, se puede estimar el error cometido en el
paso n como

x(tn+k)− xn+k ≈
C ∗
k+1

Ck+1 − C ∗
k+1

(xn+k − x̃n+k) .
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En el ejemplo que vimos, usando Adams–Bashforth de 3 pasos
como predictor y Adams–Moulton de 2 pasos como corrector,
si f ∈ C5[a, b], se puede estimar el error cometido como

en+3 = x(tn+3)− xn+3 =
x̃n+3 − xn+3

10
+ O(h5).

Métodos adaptativos.
En los métodos adaptativos, se utiliza el error anterior: si el
error estimado es mayor que el margen establecido, entonces se
disminuye el valor del paso h, mientras que si el error estimado
es menor, se aumenta el valor del paso.
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Consideremos el método

k∑
j=0

αjxn+j = h
k∑

j=0

βj fn+j ,

que supondremos convergente. Definimos los polinomios

ρ(t) = tk + αk−1t
k−1 + · · ·+ α1t + α0

σ(t) = βkt
k + βk−1t

k−1 + · · ·+ β1t + β0

y
H(t) = ρ(t)− h̃σ(t).
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Estabilidad en los métodos multipaso

Sean r̄1, . . . , r̄k las ráıces de H(t) (que supondremos simples).
Podemos considerar r̄1, . . . , r̄k funciones de h̃ tales que

r̄1(0) = r1, . . . , r̄k(0) = rk ,

donde r1, . . . , rk son las ráıces de ρ(t).

Si el método es convergente, tenemos que C0 = 0, o lo que es
lo mismo, r1 = 1 es ráız de ρ(t). Además, por verificarse la
condición de la ráız, esta ráız es simple.
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Decimos que un método lineal multipaso convergente es
absolutamente estable para un cierto h̃ si

|r̄j | < 1, para j = 1, . . . , k .

Se llama región de estabilidad absoluta al conjunto de los h̃,
tal que el método es absolutamente estable.

La región de estabilidad absoluta nos determina los valores de
h̃ = λh de modo que la solución aproximada xn converge a 0
cuando n → ∞.
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Decimos que el método es A-estable si su región de estabilidad
absoluta incluye los complejos con parte real ≤ 0.

Teorema (Segunda barrera de Dalqvist)

No existen métodos multipaso expĺıcitos A-estables. Los
métodos multipaso impĺıcitos A-estables tienen orden ≤ 2.
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Decimos que un método lineal multipaso convergente es
relativamente estable para un cierto h̃ si

|r̄1| > |r̄j |, para j = 2, . . . , k .

Se llama región de estabilidad relativa al conjunto de los h̃,
tal que el método es relativamente estable.

En el caso real, denominamos intervalo de estabilidad
relativa al mayor intervalo (α, β) con α ≤ 0 ≤ b tal que el
método es relativamente estable para todo h̃ ∈ (α, β).

La región de estabilidad relativa nos determina los valores de
h̃ = λh de modo que los errores en las condiciones iniciales
utilizadas al aplicar el método convergen a 0 cuando n → ∞.
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