
Ecuaciones en
diferencias
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Ecuaciones en diferencias

Sea VK el conjunto de sucesiones infinitas de elementos de K
(R ó C), es decir, funciones de N en K.

Sean x , y ∈ VK, definimos las sucesiones x + y y λx , λ ∈ K
como

(x + y)(n) = x(n) + y(n), (λx)(n) = λx(n), n ∈ N.

Estas operaciones dotan a VK de estructura de espacio
vectorial.

José Luis Bravo Ecuaciones en diferencias



Ecuaciones en
diferencias
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Fórmulas de
sumación

Ecuaciones en diferencias

Sea ϕ : N×Kd+1 → R. Una ecuación en diferencias de orden
d escalar es una expresión de la forma

ϕ(n, x(n), x(n + 1), . . . , x(n + d − 1), x(n + d)) = 0.

Una sucesión x ∈ VK es una solución de dicha ecuación si los
términos de la sucesión verifican la igualdad para todo n.

Diremos que es expĺıcita si es de la forma

x(n + d) = ϕ(n, x(n), x(n + 1), . . . , x(n + d − 1))

y autónoma si es de la forma

ϕ(x(n), x(n + 1), . . . , x(n + d − 1), x(n + d)) = 0.
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José Luis
Bravo

Ecuaciones en
diferencias

Ecuaciones en
diferencias
lineales

Soluciones de la
ecuación homogénea
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Se define el operador desplazamiento E como el operador lineal
E : VK → VK definido por

(Ex)(n) = x(n + 1), n ∈ N.

Nótese que si denotamos E 2 a la composición de E consigo
mismo, entonces (E 2x)(n) = x(n + 2). Análogamente,

(E ix)(n) = x(n + i), n ∈ N.

y por convenio

(E 0x)(n) = x(n), n ∈ N.
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Ecuaciones en diferencias

Se denomina diferencia progresiva de primer orden de la
sucesión x a la función

∆x(n) := x(n + 1)− x(n).

La diferencia progresiva de orden k > 1 se define
recurrentemente como

∆kx(n) := ∆(∆k−1x(n)) = ∆k−1x(n + 1)−∆k−1x(n),

El operador ∆k es lineal y se define ∆0 como la identidad.
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Estabilidad y
convergencia

Solución de la
ecuación completa

El problema
de sumación

Resolución del caso
polinomial
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Lema

Se verifica la igualdad

∆kx(n) =
k∑

j=0

(
k

j

)
(−1)k−jx(n + j), k = 0, 1, 2, . . .

Lema

Se verifica la igualdad

x(n + k) =
k∑

j=0

(
k

j

)
∆jx(n), k = 0, 1, 2, . . .
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Podemos definir las ecuaciones en diferencias escalares
mediante los operadores anteriores, aśı si la ecuación es

x(n + d) = ϕ(x(n), x(n + 1), . . . , x(n + d − 1)),

se puede denotar

Edx(n) = ϕ(E 0,E 1, . . . ,Ed−1)x(n),

o equivalentemente

∆dx(n) =ϕ

∆0,∆−∆0, . . . ,

d−1∑
j=0

(
d − 1

j

)
∆j

 x(n)

−
d−1∑
j=0

(
d

j

)
∆jx(n).
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Teorema (Existencia y unicidad)

Dados c0, c1, . . . , cd−1 ∈ C, q ∈ VK, existe una única solución,
x, de la ecuación escalar de orden d que verifica x(0) = c0,
x(1) = c1, . . ., x(d − 1) = cd−1.
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Ecuaciones en diferencias lineales

Una ecuación en diferencias lineal con coeficientes constantes
es una expresión de la forma

pr f (n + r) + pr−1f (n + r − 1) + · · ·+ p0f (n) = q(n),

donde p0, p1, . . . , pr ∈ K (R ó C), q ∈ VK.

La ecuación en diferencias se dice que es completa si q ̸≡ 0 y
homogénea si q ≡ 0.

Supondremos que p0pr ̸= 0 y que p0, p1, . . . , pr ∈ R, q ∈ VR. r
se denomina orden de la ecuación en diferencias.
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Soluciones de la ecuación homogénea

Consideremos la ecuación homogénea

pr f (n+ r) + pr−1f (n+ r − 1) + · · ·+ p1f (n+ 1) + p0f (n) = 0.

Proposición

El conjunto de soluciones f : N → C es un C-espacio vectorial
que denotaremos HC.

Denotaremos por HR el subespacio vectorial de soluciones
reales.

Nótese que HR se corresponde con las soluciones con
condiciones iniciales reales.
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Dimensión del espacio de soluciones

Lema

Las soluciones f1, . . . , fr ∈ K son linealmente independientes
sobre K si y sólo si∣∣∣∣∣∣∣∣∣

f1(0) f2(0) · · · fr (0)
f1(1) f2(1) · · · fr (1)
...

...
...

f1(r − 1) f2(r − 1) · · · fr (r − 1)

∣∣∣∣∣∣∣∣∣ ̸= 0.

Proposición

El espacio vectorial HK tiene dimensión r sobre K.
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Polinomio caracteŕıstico

Consideremos la ecuación

f (n + r) + pr−1f (n + r − 1) + · · ·+ p1f (n + 1) + p0f (n) = 0.

Definimos el polinomio caracteŕıstico de la ecuación como

P(x) := x r + pr−1x
r−1 + · · ·+ p1x + p0.

Proposición

Una función de la forma f (n) = λn, λ ̸= 0, es solución de la
ecuación en diferencias si y sólo si λ es ráız del polinomio
caracteŕıstico.

José Luis Bravo Ecuaciones en diferencias



Ecuaciones en
diferencias
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Caso 1. Ráıces simples

Proposición

Supongamos que las ráıces del polinomio caracteŕıstico,
λ1, . . . , λr , son todas simples. Las funciones f1(n) = λn

1, . . .,
fr (n) = λn

r son soluciones linealmente independientes y toda
solución es de la forma

f (n) = c1λ
n
1 + · · ·+ crλ

n
r , c1, . . . , cr ∈ C.
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Caso 1. Ráıces simples (caso real)

Supongamos que las ráıces del polinomio caracteŕıstico,
λ1, . . . , λr , son todas simples.

Si λi es compleja, la correspondiente solución es compleja,
con lo cual el sistema fundamental aśı obtenido no nos
sirve como base de HR sobre R
Si los coeficientes del polinomio caracteŕıstico son reales y
λi es ráız compleja, entonces λ̄i también es ráız y λn y λ̄n

son soluciones de la ecuación.

Si λ = ρ(cos θ + i sen θ), λ̄ = ρ(cos θ − i sen θ).
Entonces,

λn = ρn(cos nθ + i sen nθ), λ̄n = ρn(cos nθ − i sen nθ).

Tenemos las soluciones

λn + λ̄n

2
= ρn cos nθ,

λn − λ̄n

2i
= ρn sen nθ.
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Caso 2. Ráıces múltiples

Lema

Se verifica la igualdad

∆kz(x) =
k∑

j=0

(
k

j

)
(−1)k−jz(x + j), k = 0, 1, 2, . . .

Lema

Se verifica la igualdad

z(x + k) =
k∑

j=0

(
k

j

)
∆jz(x), k = 0, 1, 2, . . .
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Fórmulas de
sumación

Caso 2. Ráıces múltiples

Lema

Si Q(x) es un polinomio de grado ≤ p, entonces ∆kQ(x) ≡ 0
para todo k > p.

Sea λ una ráız del polinomio caracteŕıstico P(x) de
multiplicidad s, es decir,

P(λ) = P ′(λ) = · · · = Ps−1)(λ) = 0, Ps)(λ) ̸= 0.

Proposición

Si Q(n) es un polinomio de grado menor o igual a s − 1,
entonces f (n) = λnQ(n) es solución de la ecuación homogénea.
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Caso 2. Ráıces múltiples

Si λ1, λ2, . . ., λp son todas las ráıces del polinomio
caracteŕıstico, con multiplicidades s1, s2, . . ., sp,
respectivamente, entonces s1 + s2 + · · ·+ sp = r y las r
funciones

λn
1, nλn

1, n2λn
1, . . . , ns1−1λn

1,

λn
2, nλn

2, n2λn
2, . . . , ns2−1λn

2,

. . . . . . . . . . . . . . . .

λn
p, nλn

p, n2λn
p, . . . , nsp−1λn

p,

son soluciones de la ecuación homogénea.
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Caso 2. Ráıces múltiples

Proposición

Sean λ1, . . . , λp ∈ C, λi ̸= λj (i ̸= j), y sean t1, . . . , tp ∈ N.
Las funciones

λn
1, nλn

1, n2λn
1, . . . , nt1λn

1,

λn
2, nλn

2, n2λn
2, . . . , nt2λn

2,

. . . . . . . . . . . . . . . .

λn
p, nλn

p, n2λn
p, . . . , ntpλn

p,

definidas en N, son linealmente independientes sobre C.
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Caso 2. Ráıces múltiples

Supongamos que P ∈ R[x ].
Sea λ una ráız compleja de P de multiplicidad s. Entonces λ̄
es una ráız compleja de P de multiplicidad s. Supongamos

λ = ρ(cos θ + i sen θ).

Las siguientes funciones generan el mismo espacio vectorial que
niλn, ni (λ̄)n, 0 ≤ i ≤ s − 1:

ρn cos nθ, nρn cos nθ, . . . , ns−1ρn cos nθ

ρn sen nθ, nρn sen nθ, . . . , ns−1ρn sen nθ.
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Estabilidad

Consideremos la ecuación homogénea

pr f (n+ r) + pr−1f (n+ r − 1) + · · ·+ p1f (n+ 1) + p0f (n) = 0.

Decimos que una solución f es acotada si existe una constante
c ∈ R tal que |f (n)| ≤ c para todo n ∈ N.
Decimos que la ecuación es estable si todas sus soluciones son
acotadas.

Teorema

La ecuación en diferencias homogénea es estable si y sólo si
para toda ráız del polinomio caracteŕıstico, λ, se verifica que
|λ| ≤ 1 si λ es ráız simple y |λ| < 1 si λ es ráız múltiple.
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Convergencia

Consideremos la ecuación homogénea

pr f (n+ r) + pr−1f (n+ r − 1) + · · ·+ p1f (n+ 1) + p0f (n) = 0.

Decimos que la ecuación es convergente si para toda solución
f (n) se verfica que

lim
n→∞

f (n) = 0.

Teorema

La ecuación en diferencias homogénea es convergente si y sólo
si para toda ráız del polinomio caracteŕıstico, λ, se verifica que
|λ| < 1.
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José Luis
Bravo

Ecuaciones en
diferencias

Ecuaciones en
diferencias
lineales

Soluciones de la
ecuación homogénea
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Soluciones de la ecuación completa

Proposición

Sea una ecuación en diferencias lineal de coeficienes constantes
de orden r

pr f (n+ r)+pr−1f (n+ r−1)+ · · ·+p1f (n+1)+p0f (n) = q(n).

El conjunto de soluciones es un espación af́ın de dimensión r .

Más aún, si f : N → K es solución de la ecuación y HK es el
espacio de soluciones de la correspondiente ecuación
homogénea, entonces f + HK es el espacio de soluciones de la
ecuación completa.
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Variación de constantes

Vamos a ver como podemos resolver una ecuación en
diferencias de la forma

f (n+ r)+pr−1f (n+ r−1)+ · · ·+p0f (n) = λnQ(n), (n ∈ N),

en donde Q(x) es un polinomio y λ ∈ C.

Para ello emplearemos el método de variación de constantes,
partiendo de soluciones de la forma

f (n) = λnnsH(n),

donde s es la multiplicidad de λ como ráız de P (s = 0 si no es
ráız) y H es un polinomio del mismo grado que Q.
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Estabilidad y
convergencia

Solución de la
ecuación completa

El problema
de sumación

Resolución del caso
polinomial
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Solución particular

Proposición

Consideremos la ecuación

f (n + r) + pr−1f (n + r − 1) + · · ·+ p0f (n) = λnQ(n),

donde λ ∈ C y Q(x) = atx
t + · · ·+ a1x + a0.

Esta ecuación admite una solución de la forma

f (n) = λnns(btn
t + · · ·+ b1n + b0),

donde s es la multiplicidad de λ como ráız del polinomio
caracteŕıstico (s = 0 si λ no es ráız).
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Estabilidad y
convergencia

Solución de la
ecuación completa

El problema
de sumación

Resolución del caso
polinomial
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El problema de sumación

Problema (1)

Dada una función real, f (x), definida en un conjunto de la
forma {x0 + nh : n ∈ N}, con x0 y h fijos, calcular la suma

f (x0) + f (x0 + h) + · · ·+ f (x0 + nh), n ∈ N.

Problema (2)

Dada una función real, g(x), definida en N, calcular la suma

Sn = g(0) + g(1) + . . .+ g(n), n ∈ N.
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El problema de sumación y las ecuaciones en
diferencias

Problema (3)

Dada g : N → R, encontrar F : N → R tal que

∆F (n) = F (n + 1)− F (n) = g(n), n ∈ N.

Proposición

Los Problemas 1, 2 y 3 son equivalentes.
Además, si F es solución de ∆F (n) = g(n), entonces

q∑
j=p

g(j) = F (q + 1)− F (p).
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Ejemplo

Ejemplo

Sea a ∈ C, calcular
n∑

j=0

aj , para n ∈ N
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Ejemplo

Ejemplo

Consideremos las funciones

n(k) :=


1

n(n+1)...(n−k−1) si k ∈ Z−,

1 si k = 0,

n(n − 1) . . . (n − k + 1) si k ∈ Z+.

Para k ∈ Z, calcular la solución de

∆F (n) = n(k).
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Caso polinomial

Vamos a buscar soluciones (polinómicas) de

∆F (x) = g(x).

donde

g(x) =
k∑

j=0

ajx
j .

Supongamos que tenemos funciones Fj tales que ∆Fj(x) = x j ,
0 ≤ j ≤ k . Entonces la función

F (x) =
k∑

j=0

ajFj(x),

es solución de ∆F (x) = g(x).
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Números de Bernoulli

Se definen los números de Bernoulli, B0, B1, . . ., como los que
verifican

B0 = 1, Bn =
n∑

k=0

(
n

k

)
Bk , n = 2, 3, . . . ,

Los polinomios de Bernoulli se definen a partir de los números
de Benoulli como

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k , n = 0, 1, . . . .
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Propiedades I

Proposición

Los polinomios y números de Bernoulli tienen las siguientes
propiedades:

i) Bn(0) = Bn, n = 0, 1, . . ..

ii) Bn(1) = Bn, n = 2, 3, . . ..

iii)

n−1∑
k=0

(
n

k

)
Bk =

n∑
k=1

(
n

k

)
Bn−k = 0, n = 2, 3, . . . .
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Propiedades II

Proposición

Los polinomios y números de Bernoulli tienen las siguientes
propiedades:

iv) B ′
n(x) = nBn−1(x), n = 1, 2, . . ..

v) ∆Bn(x) = nxn−1, n = 0, 1, . . ..

vi)

Bn(x + 1) =
n∑

k=0

(
n

k

)
Bk(x), n = 0, 1, . . . .
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Estabilidad y
convergencia

Solución de la
ecuación completa

El problema
de sumación

Resolución del caso
polinomial
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Propiedades III

Proposición

Se verifican las siguientes propiedades:

i) B2n

(
1

2
+ x

)
= B2n

(
1

2
− x

)
, n = 0, 1, . . . .

ii) B2n−1

(
1

2
+ x

)
= −B2n−1

(
1

2
− x

)
, n = 1, 2, . . . .

iii) B2n−1

(
1

2

)
= 0, n = 1, 2, . . . .

iv) B2n−1(0) = B2n−1(1) = B2n−1 = 0, n = 2, 3, . . . .

v)

∫ 1

0
Bn(x) dx = 0, n = 1, 2, . . . .
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Ráıces en el intervalo [0, 1]

Proposición

i) En el intervalo [0, 1] los polinomios B2n−1, con n ≥ 2,
tienen únicamente las ráıces 0, 1/2, 1.

ii) En el intervalo [0, 1] los polinomios B2n, con n ≥ 1, sólo
tienen dos ráıces, una en el intervalo (0, 1/2) y su
simétrica en (1/2, 1)

Corolario

i) B2nB2n−2 < 0, n = 2, 3, . . . .

ii) B2n(x)− B2n tiene signo constante en [0, 1] para todo
n ≥ 0.
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Solución de ∆F (x) = g(x)

Teorema

Consideremos la ecuación

∆F (x) = g(x),

donde g(x) =
∑m

k=0 akx
k es un polinomio. Entonces una

solución de la ecuación es

F (x) =
m∑

k=0

ak
k + 1

Bk+1(x).
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Fórmula de Euler-Maclaurin

Teorema (Fórmula de Euler-Maclaurin)

Sea g una función de clase Cn en [m, p], entonces

p−1∑
x=m

g(x) =

∫ p

m
g(t) dt +

n−1∑
i=1

Bi

i !

(
g i−1)(p)− g i−1)(m)

)

− 1

n!

∫ 1

0

(
Bn(t)− Bn

)(p−1∑
x=m

gn)(x + 1− t)

)
dt.
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Fórmula de Euler-Maclaurin (Demostración)

En primer lugar,∫ k+1

k
g(t) dt =

∫ 1

0
g(k+1−t) dt =

∫ 1

0
g(k+1−t)B0(t) dt = ∗

Por integración por partes,

∗ =g(k + 1− t)B1(t)|10 +
∫ 1

0
g ′(k + 1− t)B1(t)dt

=
1

2
(g(k) + g(k + 1)) +

B2(t)

2!
g ′(k + 1− t))|10

+

∫ 1

0
g ′′(k + 1− t)

B2(t)

2!
dt = ∗∗
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Fórmula de Euler-Maclaurin (Demostración)

Mediante un segundo paso de integración por partes

∗∗ =
1

2
(g(k) + g(k + 1))− (g ′(k + 1)− g ′(k))

B2

2!

+

∫ 1

0
g ′′(k + 1− t)

B2(t)

2!
dt

=
1

2
(g(k) + g(k + 1))−

n∑
i=2

(g i−1)(k + 1)− g i−1)(k))
Bi

i !

+

∫ 1

0
gn)(k + 1− t)

Bn(t)

n!
!dt = ∗ ∗ ∗
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Fórmula de Euler-Maclaurin (Demostración)

Y repitiendo el proceso

∗ ∗ ∗ =
1

2
(g(k) + g(k + 1))−

n∑
i=2

(g i−1)(k + 1)− g i−1)(k))
Bi

i !

+

∫ 1

0
gn)(k + 1− t)

Bn(t)

n!
dt

=g(k)−
n∑

i=1

(g i−1)(k + 1)− g i−1)(k))
Bi

i !

+

∫ 1

0
gn)(k + 1− t)

Bn(t)

n!
dt.
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Fórmula de Euler-Maclaurin (Demostración)

Despejando, tenemos

g(k) =

∫ k+1

k
g(t) dt +

n∑
j=1

(g i−1)(k + 1)− g i−1)(k))
Bi

i !

−
∫ 1

0
gn)(k + 1− t)

Bn(t)

n!
dt

=

∫ k+1

k
g(t) dt +

n−1∑
j=1

(g i−1)(k + 1)− g i−1)(k))
Bi

i !

−
∫ 1

0
gn)(k + 1− t)

Bn(t)− Bn

n!
dt.

Para concluir, calculamos el sumatorio y obtenemos la
expresión buscada.
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Fórmula de sumación de Euler

Corolario (Fórmula de sumación de Euler)

Se g(x) un polinomio de grado n. Entonces,

p−1∑
x=m

g(x) =

∫ p

m
g(t) dt +

n∑
j=1

Bj

j!

(
g j−1)(p)− g j−1)(m)

)
.
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